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ABSTRACT 

Daily operations of U.S. Navy afloat and ashore systems are heavily reliant on 

industrial control systems (ICSs) to manage critical infrastructure services. 

Programmable logic controllers (PLCs) are vital components in these cyber-physical 

systems. The industrial network protocols used to communicate between nodes in a 

control network are complex and vulnerable to a myriad of cyber attacks, as reported by 

Department of Homeland Security Industrial Control Systems Cyber Emergency 

Response Team. This thesis utilizes protocol fuzz testing techniques to investigate 

potential vulnerabilities in the Allen-Bradley/Rockwell Automation (AB/RA) 

MicroLogix 1100 PLC through its implementation of EtherNet/IP, Common Industrial 

Protocol (CIP), and Programmable Controller Communication Commands (PCCC) 

communication protocols. This research also examines whether cross-generational 

vulnerabilities exist in the more advanced AB/RA ControlLogix 1756-L71 PLC. Our 

results discover several deviations from the EtherNet/IP and PCCC specifications in the 

MicroLogix 1100 implementation of these protocols. Additionally, we find that a recently 

disclosed denial-of-service vulnerability that renders the MicroLogix 1100 inoperable 

does not trigger a similar fault condition in the ControlLogix PLC. 
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I. INTRODUCTION 

A. MOTIVATION 

While industrial control systems (ICSs) allow for the management of large, 

complex, and often distributed machinery systems, they can also be manipulated for 

malicious purposes. In 2000, a disgruntled former employee in Queensland, Australia, 

perpetrated one of the first known attacks on a Supervisory Control and Data Acquisition 

(SCADA) system. Through manipulation of the pumping stations, the offender released 

over one million liters of sewage into local waterways [1]. Following the events in 

Australia, attackers have successfully exploited the vulnerabilities inherent in networked 

control systems. The Stuxnet worm, discovered in 2010, targeted specific Siemens 

programmable logic controllers (PLCs) used at the Natanz nuclear enrichment facility. 

The sophisticated malware utilized four zero-day vulnerabilities to send fatigue-inducing 

commands to PLCs controlling nuclear enrichment centrifuges [2].    

SCADA-based power grids are also vulnerable to cyber attacks. In December 

2015, the Prykarpattyaoblenergo control center in Ukraine was the victim of an attack 

that left more than 230,000 West Ukraine residents without power for six hours. The 

alleged Russian attackers gained access to the utility’s network through a phishing 

scheme. Using a program called BlackEnergy3, the hackers established a backdoor on the 

network, from which they gained access to the SCADA networks. The attackers were 

able to take thirty substations offline, disable backup power, and rewrite substation 

firmware before using KillDisk malware to delete files from operator systems and render 

them unusable [3].  

Attacks against networked control systems can take varied forms. In April 2017, 

hackers simultaneously set off all 156 tornado warning sirens in Dallas, Texas. In normal 

operation, police dispatchers or weather officials send signals to a transmitter that 

activates selected sirens. To set off the sirens, the attacker used the input frequency to 

repeatedly activate all of the sirens over a period of several hours [4]. Although this 



 2 

attack relied on hijacking radio frequencies, similar disruption could potentially be 

caused by malicious software.   

Efforts to address PLC vulnerabilities started several years ago. In 2007, the Idaho 

National Laboratory conducted the Aurora test in which researchers caused physical 

damage to a diesel generator by rapidly connecting and disconnecting the generator to the 

power grid, causing an out of phase condition [5]. In 2013, Sandia National Laboratories 

developed a system called Weaselboard, which provides zero-day exploit protection for 

PLCs by monitoring PLC backplane communications between devices and scanning for 

configuration changes [6]. In the private sector, Digital Bond created Project Basecamp 

to perform security testing on popular SCADA system components. The Project 

Basecamp researchers demonstrated vulnerabilities affecting multiple different PLC 

market leaders [7].  

One effective method to test for vulnerabilities in protocols and systems is fuzzing 

or fuzz testing. Fuzzing is a technique that aims to uncover coding errors or security flaws 

by feeding a target program random input parameters [8]. Previous work has 

demonstrated that fuzz testing can be used to uncover vulnerabilities in industrial network 

protocol [9].  

B. RELEVANCE TO THE NAVY 

The Hull Mechanical and Electrical (HM&E) systems on U.S. Navy ships employ 

industrial automation components such as PLCs to run critical onboard services like 

propulsion, auxiliary, and mission-specific equipment [10]. As the Navy reduces 

shipboard crew strength through automation, as demonstrated in the DDG 1000, and 

launches completely unmanned vessels like the Anti-Submarine Warfare Continuous 

Trail Unmanned Vessel, the reliance on shipboard ICS increases. While a networked 

control system architecture (e.g., SCADA) provides centralized data availability and 

control of physical equipment in different locations, the communication channels 

between the PLCs and control devices are vulnerable to cyber attacks [2], [11]. 

Recognizing the inherent vulnerabilities in control systems, the Navy is 

developing the Resilient Hull, Mechanical, and Electrical Security system to prevent 
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attackers from disabling or accessing shipboard PLCs. The system varies the 

implementation of PLC firmware so that if an exploit is able to disable a primary 

controller, the same exploit will not affect the redundant PLC’s ability to assume the 

operation [12].   

Allen Bradley / Rockwell Automation (AB/RA) is a leader in the ICS field and 

their products are currently used onboard Navy ships. Grandgenett et al. showed that 

AB/RA PLCs are susceptible to denial-of-service (DoS) [13], man-in-the-middle attacks, 

and replay attacks to force unauthorized privileged commands [14]. AB/RA PLCs 

support two widely-used industrial control protocols: Common Industrial Protocol (CIP) 

[15], EtherNet/IP (ENIP) [16], in addition to Programmable Controller Communication 

Commands (PCCC), a legacy AB/RA proprietary protocol [17]. CIP is an industry-vetted 

network protocol used to manage industrial devices [15]. CIP rides on top of ENIP, 

which is transported over TCP/IP. ICS network protocols, like CIP, ENIP, and PCCC 

allow for efficient control of distributed systems, but also create potential vectors of 

attack to disable or destroy U.S. Navy ships. 

C. OBJECTIVES 

This thesis aims to identify vulnerabilities in select AB/RA PLCs through their 

implementation of CIP and ENIP to directly improve mission readiness of U.S. Navy 

ships and harden their cyber defenses. Tacliad discusses the discovery of a CIP-

encapsulated PCCC vulnerability in an AB/RA MicroLogix PLC through fuzz testing 

different ENIP, CIP, and PCCC commands [9]. This thesis seeks to expand and improve 

the ENIP Fuzz program to include additional ENIP, CIP, and PCCC commands. Once 

adapted to fuzz a larger catalogue of commands, we aim to implement ENIP Fuzz on the 

MicroLogix PLC and a more advanced AB/RA PLC (ControlLogix) to determine if 

vulnerabilities to AB/RA PLC communications stack are cross-generational.  

D. THESIS ORGANIZATION 

Chapter II provides background on CIP, EtherNet/IP, and PCCC protocols. It 

includes a summary of previous ICS fuzz testing efforts, Scapy [18], and existing Scapy-

based fuzzing tools. Chapter II also presents an introduction to two AB/RA PLCs used in 
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this thesis. Chapter III describes the experimentation design objectives, methodology, and 

testing environment. Chapter IV is an account of test plan and implementation. Chapter V 

is our analysis of results. Chapter VI discusses conclusions and future work. 
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II. BACKGROUND

A. COMMON INDUSTRIAL PROTOCOL (CIP) 

CIP, previously known as Control and Information Protocol [19], is a “peer-to-

peer object oriented protocol that provides connections between industrial devices 

(sensors, actuators) and higher-level devices (controllers)” [15]. CIP was developed by 

Rockwell Automation but is now run by Open DeviceNet Vendors Association (ODVA), 

a global association of automation industry leaders. CIP is supported by four different 

ODVA network communication protocols, EtherNet/IP, DeviceNet, CompoNet and 

ControlNet [20]. Using the Open System Interconnection model, CIP utilizes the 

Presentation and Application layers. Session layer is not utilized in CIP. In the 

EtherNet/IP structure, CIP rides on top of the Transport layer and utilizes an Ethernet 

network stack [21]. Figure 1 illustrates the CIP network work stack architecture.  
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Figure 1.  CIP Network Architecture Stack. Source: [15]. 

CIP nodes are comprised of objects, which can contain data. Each object is an 

instance of a particular class. CIP objects contain attributes for both object and class, 

which enable specific services. Objects with the same attributes belong to the same class 

[15]. CIP is designed so that the same objects on different devices behave in the same 

manner. This allows for a producer-consumer relationship, where data is sent from the 

producer device to potentially multiple consumer devices with a single transmission [22]. 

Figure 2 shows the CIP Object Model. 
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Figure 2.  CIP Object Model. Source: [23]. 

CIP relies on two methods of routing to transmit data. For connected messages, 

CIP uses a connection ID to transfer packets. For unconnected messages, an Internal 

Object Identifier (IOI), also known as an EPATH, is used to explicitly provide the path 

packets will travel to their destination. The device that opens the connection dictates the 

routing directives [24]. 

B. ETHERNET/INDUSTRIAL PROTOCOL (ETHERNET/IP) 

EtherNet/IP utilizes Ethernet (IEEE 802.3) and the TCP/IP network protocol stack 

to transport CIP as an application layer protocol. For this reason, it is often referred to as 

“CIP over Ethernet” [21]. EtherNet/IP uses IP Multicast to enable a producer-consumer 

exchange of information between a sending device and receiving devices [15]. By 

utilizing a common Ethernet protocol stack, EtherNet/IP allows CIP to be used across 

different CIP networks and enables Internet compatibility and remote control capability 

[21]. Figure 3 shows how an EtherNet/IP message is embedded in the TCP data payload. 



 8 

 

Figure 3.  EtherNet/IP Packet Encapsulation. Source: [25]. 

The encapsulation message includes a standard 24-byte fixed length header, 

followed by an optional data section. Encapsulation messages may be in TCP or UDP 

format and are sent to port 44818 of the receiving device. Table 1 shows the content of 

the EtherNet/IP encapsulation header and encapsulated data [16].  

Table 1.   EtherNet/IP Packet Structure. Source: [16]. 

 
 

C. PROGRAMMABLE CONTROLLER COMMUNICATION COMMANDS 

(PCCC)  

PCCC is a legacy AB/RA protocol designed for the PLC5 and SLC500 processors 

[21]. PCCC objects do not support CIP connections on their own. However, they can be 

encapsulated in CIP commands in order to communicate with legacy PLCs. This 

encapsulation is accomplished through the use of an IOI. Once a connection to a Message 

Router object is established, an IOI is used to specify the PCCC object. When the CIP 

packet is received, “Execute PCCC” service is processed by the PCCC object at the 
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receiving device [24]. Table 2 shows the message structure for a PCCC command, 

without CIP encapsulation [26]. 

Table 2.   Message Format for Execute PCCC. Source: [26]. 

 
 

D. FUZZ TESTING 

The field of fuzz testing originated with Wisconsin University professor Barton 

Miller in 1989. Miller’s team built a program, named fuzz, which generated random 

strings of characters and fed them into program inputs in an effort to create system 

failures [8]. Fuzz testing has grown into a widely-used method of vulnerability testing.  

There are two main subcategories of fuzzers: generation-based and mutation. 

Generation-based fuzzers craft fuzzing inputs based on knowledge of input structures and 

protocols. These programs generate strings of random characters and varying lengths. 

Sophisticated generation-based fuzzers utilize block-based methods, where each input 

field is treated as a targetable fuzzing block [27]. These fuzzers require detailed 

specifications of input fields and protocols in order to customize block-sized inputs [28]. 

Mutation fuzzers utilize known good inputs and network traffic to build fuzzing 

structures. By taking the known good input and switching out acceptable values with 

random values, mutation fuzzers increase the likelihood their malformed inputs will not 

be rejected outright, which increases their effectiveness [27].  
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E. ICS FUZZERS 

Numerous fuzz testing suites targeting well known ICS protocols are available. 

beSTORM offers a commercially available EtherNet/IP fuzzing tool [29]. Mu Test Suite, 

also a commercial product, includes resources to fuzz Distributed Network Protocol 

(DNP3), Modbus, and the IEC61850 protocol [27]. In the open source arena, the Sulley 

fuzzer includes modules for popular ICS protocols such as DNP3, Inter-Control Center 

Communications Protocol, and Modbus [30]. Developed at Dartmouth, LZFuzz fuzzes 

SCADA communications with unknown protocol structures. LZFuzz inserts itself into 

live traffic and captures packets. Packets inbound to the target are tokenized and sent 

though a mutation fuzzer to generate fuzzing inputs to the target. The program then 

monitors return traffic to the traffic source for indications of success [27].  

This thesis research utilizes Tacliad’s open source fuzzing tool, called ENIP Fuzz. 

ENIP Fuzz is an ICS fuzzing program that uses the Python-based packet manipulation 

tool, Scapy [18] to craft customized fuzzing inputs. ENIP Fuzz targets fields within ENIP 

and CIP request packets [9].  

F. SCAPY 

Scapy is a Python-based packet manipulation tool that can enable network probes 

and attacks. Scapy is flexible enough to allow custom packet crafting. It does not place 

limits on type of field input or stack configuration, which makes it a powerful tool for 

protocol fuzz testing. Users can craft Scapy packets in stackable layers. Scapy is capable 

of both sending and listening for response packets. Many networking tools apply 

interpretive filters on packet responses. Scapy does not employ this method in order to 

avoid inserting potential bias into response results. Interpretation of Scapy response 

packets lies with the user [18].  

G. PREVIOUS SCAPY-BASED FUZZING 

Scapy’s versatile configuration has made it a popular choice for fuzz testing 

frameworks. Scapy allows a user to specify designated fields for fuzzing, while providing 

standard protocol inputs to other fields [31]. Scapy libraries have been used to fuzz Wi-Fi 

drivers [32], IPV6 [33] and IPV6 over low power wireless personal area networks [34], 
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and Internet Key Exchange messages [35]. In the ICS field, different fuzzing tools have 

utilized Scapy. Modbus/TCP Fuzzer targets the Modbus communication protocol [36]. 

Modbus is an application layer protocol that utilizes a master-slave architecture [37]. 

Scapy is used to target the Modbus/TCP master-initiated command packets for fuzzing. 

Some electrical utilities use the IEEE C37.118 protocol to communicate between wide 

area monitoring systems that operate phasor measurement units and phasor data 

concentrators. Sprabery et al. created a IEEE C37.118 mutation-based fuzzer using Scapy 

to test particular protocol rules for vulnerabilities [38].  

Tacliad’s ENIP Fuzz targets the EtherNet/IP and CIP protocols using the Scapy 

library to craft malformed packets. ENIP Fuzz tests specified objects in the designated 

protocols and monitors for unexpected responses or lack of response to liveliness checks. 

While Tacliad tested a very limited sample of EtherNet/IP, CIP, and CIP-encapsulated 

PCCC commands, his experimentation demonstrated a proof of concept, which can be 

greatly expanded to determine the robustness of the examined protocols [9].  

H. ALLEN-BRADLEY / ROCKWELL AUTOMATION PLCS 
(MICROLOGIX 1100 AND CONGROLLOGIX 5570) 

The MicroLogix 1100 is a lower-end PLC that supports 12 inputs (10 digital and 

2 analog) and 6 outputs, and up to 144 digital I/O points. It is utilized to perform varied 

industrial applications such as machinery control and production processes. The 

controller has an RS232/485 serial port and an Ethernet port. The Ethernet port enables 

peer-to-peer communication across controllers [39]. Figure 4 shows a MicroLogix 1100. 

Figure 4.  MicroLogix 1100 PLC. Source: [39]. 
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The AB/RA ControlLogix PLC is a more advanced modular PLC than the 

MicroLogix 1100. A ControlLogix PLC consists of a controller (CPU) module (e.g., 

1756-L71 controller) and multiple I/O modules in one chassis. The local I/O modules can 

include one or more EtherNet/IP modules (e.g., 1756-EN2T and 1756-EWEB modules), 

and one or more analog and digital I/O modules (e.g., 1756-OF8 and 1756-IB16 

modules). A ControlLogix 5570 PLC can handle up to 128,000 digital or 4,000 analog 

I/O points and is used for shipboard applications, power generation, and transportation 

functions. The PLC can communicate across multiple protocols including EtherNet/IP 

(including CIP and encapsulated PCCC), ControlNet, DeviceNet, Data Highway Plus, 

Remote I/O, SynchLink, and third-party networks. The 5570 model does not offer an 

embedded Ethernet Port, but has a USB interface for local programming. For ease of 

configuration and maintenance, most EtherNet/IP modules support web browsing, email, 

and file transfer. The ControlLogix family also offers the ability to configure controller 

redundancy into the system. [40]. Figure 5 shows a ControlLogix PLC with multiple I/O 

modules. 

  

Figure 5.  ControlLogix PLC. Source: [40]. 
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III. DESIGN 

A. OBJECTIVES 

This thesis explores two objectives. The first objective is to determine if ENIP 

Fuzz can be used to determine new vulnerabilities in the AB/RA implementation of the 

ENIP, CIP and PCCC protocols used by the MicroLogix and ControlLogix PLCs. Our 

hypothesis is that undiscovered software flaws could potentially exist in the 

implementation of AB/RA’s implementation of the protocols. The second objective is to 

determine if testing network vulnerabilities known to exist in older PLCs help inform on 

the robustness of the ICS network stack in a more modern PLC design. Our hypothesis is 

that legacy protocol handlers are left in the code base but not fully tested in newer PLC 

models.  

B. METHODOLOGY 

Testing follows a black box-style fuzzing methodology, i.e., having no access to 

AB/RA source code. The test plan and testing methodology relies heavily on the protocol 

specifications for ENIP, CIP, and PCCC protocols. To determine specific commands 

from each protocol to fuzz, we analyze protocol commands to identify targets that focus 

on non-disruptive functionality. We avoid commands that we assessed to have high risk 

of reconfiguring memory, altering functionality, or causing permanent damage to the 

SUT. We aim to select target commands that provide a representative sample of different 

types of services provided by each protocol.   

Previous testing using ENIP Fuzz exercised three MicroLogix-supported 

commands sent over a TCP connection: ENIP Register Session, CIP No_Operation 

(NOP), and PCCC Execute Services [9]. Our testing framework focuses on a wider cross-

section of ENIP commands and CIP services, transported over both TCP and UDP, in an 

effort to discover vulnerabilities that may be present in different service types.  

The ENIP test commands can be grouped into five categories as shown in 

Table 3. Our ENIP test suite consists of all three “list” commands, the UnRegisterSession 
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command, the SendRRData and SendUnitData commands, the reserved for legacy 

commands, and the reserved for future expansion commands.  

Table 3.   ENIP Test Commands. Source: [16]. 

ENIP Test Commands Description 
Lists 

List Identity Requests information on the target’s identity.  

List Interfaces 
Requests non-CIP communication interfaces associated 
with the target.  

List Services Requests information on the supported services.  
Session Commands 

Unregister Session 
Instructs the receiver to initiate a close of the underlying 
TCP/IP connection.  

Send Commands 

SendRRData Transfers an encapsulated request/reply packet. 

SendUnitData Sends encapsulated connected messages. 
Legacy Commands 
Reserved Command 
Codes Reserved for legacy use. 
Future Expansion Commands 
Reserved Command 
Codes Reserved for future expansion. 

 

For the CIP Explicit Messaging testing, we select services with multiple fuzzable 

fields based on the assumption that such commands would be more complex and have a 

higher potential for vulnerabilities in handling errors. Table 4 summarizes the CIP 

common services in the CIP test suite. While each of the Get_Attributes_xxx services 

have a corresponding Set_Attributes_xxx command, we specifically skip the latter in an 

effort to not corrupt any PLC settings.  
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Table 4.   CIP Test Commands. Source: [15]. 

CIP Test Commands Description 

Get Attribute All 
Returns the contents of the instance or class 
attributes defined in the object definition.  

Get Attribute List 

Returns the contents of the selected 
gettable attributes of the specified object 
class or instance.  

Get Attribute Single 
Returns the contents of the specified 
attribute.  

Find Next Object Instance 

Returns a list of Instance IDs [15] 
associated with existing Object Instances 
[15]. Existing Objects are those that are 
currently accessible from the CIP subnet.  

 

Our strategy for testing PCCC commands follows two common testing 

techniques: specification compliance testing and unexpected exception handling testing. 

First, we identify the PCCC commands that are described in the DF1 Protocol and 

Command Set specification [17] as compatible with the MicroLogix 1000 family’s 

implementation of the protocol. PCCC information for the SUTs is not publicly available. 

Table 5 shows the commands in the PCCC test suite that have a low risk of disrupting the 

SUT functionality. We choose the PCCC Echo command because it allows the inclusion 

of a large amount of data in a packet, which can be used to test the maximum allowable 

packet size. We select the Protected Typed File Read, Protected Typed File Write, and 

Protected Logical Write with Three Address Fields commands for their multiple fuzzable 

fields and potential for stack corruption. The Unprotected Read command is selected for 

its potential to cause errors by attempting to read unintended address spaces. The Read 

Diagnostic Counters command is included in the test suite due to its ability to read data 

from a fuzzable address location. The Diagnostic Status command is also tested because 

the response to the Diagnostic Status request command provides the starting memory 

address for the PLC’s diagnostic counters, which can be used with the Read Diagnostic 

Counters command.   

In addition to the MicroLogix-supported PCCC commands, the PCCC test suite 

also includes commands that may contain vulnerabilities or cause an unexpected result 
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because, according to the PCCC specification [17], they are not supported by the 

MicroLogix 1000 PLC (see Table 5). While the selected commands, Download 

Completed and Restart, do not have fuzzable fields, their inclusion in the test suite allows 

testing of unexpected error handling.  

Table 5.   PCCC Test Commands. Source: [17]. 

PCCC Test Commands Description 

Echo 
The receiving module should reply to this command by 
transmitting the same data back to the originating node.  

Protected Typed File 
Read Reads data from an open file in the PLC. 
Protected Typed File 
Write Writes data to an open file in the PLC. 
Protected Logical Write 
with Three Address 
Fields Writes data to a logical address in PLC processor.  

Unprotected Read Read data from a common interface file.   

Diagnostic Status 
Reads a block of status information from an interface 
module.  

Read Diagnostic 
Counters 

Reads up to 244 bytes of data from the PROM or RAM of 
an interface module.  

Restart 

Revokes upload and download privileges for the source 
computer node and initializes PLC restart. (Command 
intended for PLC-3 only after completion of upload or 
download operation) 

Download Completed 
Places processor back in previous mode upon completion 
of system download.  

Protected Typed Logical 
Read with Three Address 
Fields Reads data from a logical address in PLC processor. 
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Previous ENIP Fuzz testing uncovered an improper input validation vulnerability 

in different versions of MicroLogix 1100 controllers, which is described in the ICS-

CERT security advisory ICSA-17-138-03 [41]. When the Protected Typed Logical Read 

with Three Address Fields command was issued with certain parameters, the MicroLogix 

1100 halted, causing a denial of service condition. This command is tested on a 

ControlLogix 5570 to verify our second hypothesis that legacy protocol handlers may be 

left in the code base but not fully tested in newer PLC models.      

C. TEST ENVIRONMENT 

The fuzzing tool used in this thesis is ENIP Fuzz. It is a Scapy-based fuzzer that 

enables construction of specially crafted packets, which allows the user to test a wide 

variety of inputs for each value in protocol packet. ENIP Fuzz utilizes both CIP and ENIP 

dissectors, which define classes for each protocol request and response message format.   

The MicroLogix test environment consists of a MicroLogix system under test 

(SUT), a Windows PC with a Windows 7 virtual machine (VM), a Mac laptop with a 

Kali Linux 2.0 VM, and a Mac laptop running the Wireshark protocol analyzer. All 

components are connected to a central hub. The Windows 7 VM runs RSLinx and 

RSLogix—AB/RA development software with which a user can send commands to and 

monitor responses from the connected PLC. In the Kali VM, ENIP Fuzz is used to build 

and send custom packets to the PCL in order to test the ENIP, CIP, and PCCC protocols 

for vulnerabilities. During testing, potential faults are monitored on the RSLogix console, 

from fault responses in Wireshark, and physical fault indications on the SUT. The testing 

environment setup is displayed in Figure 6.  
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Figure 6.  MicroLogix Testing Environment 

The ControlLogix test environment is similar to the MicroLogix environment 

except that the Rockwell Studio 5000 Logic Designer development software running on a 

Window 7 PC is used instead of the RSLogix software (see Figure 7). 

 

Figure 7.  ControlLogix Testing Environment 
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IV. IMPLEMENTATION AND TEST PLAN

A. FUZZER IMPLEMENTATION 

The fuzzing platform, ENIP Fuzz [9], is modified to conduct the desired breadth 

of target command testing across the ENIP, CIP, and PCCC protocols. Using the 

modified ENIP Fuzz program, properly formed packets are crafted and sent to the SUT to 

establish baseline request and response behavior. Specially designed malformed packets 

are then sent to the SUT and analyzed in relation to the hypothesized SUT responses. The 

testing goal is to trigger a denial of service condition in the SUT. This is defined as a 

fault in the SUT that requires either a power cycle to clear or reset through the 

RSLogix/Studio 5000 interfaces, or a disruption in the SUT’s ability to send or receive 

command traffic.   

1. FUZZER MODIFICATIONS FOR MICROLOGIX

The ENIP Fuzz architecture consists of command and service-specific fuzzing 

modules and protocol dissectors. Eight ENIP fuzzing modules are constructed to test the 

following ENIP commands (discussed in Chapter III): ListServices, ListIdentity, 

ListInterfaces, UnRegisterSession, SendRRData, SendUnitData, Reserved for Legacy 

Use, and Reserved for Future Use. Two CIP fuzzing modules are created to test the 

Get_Attributes_All and Find_Next_Object_Instance CIP services. Nine PCCC fuzzing 

modules are added to test the following PCCC commands via the PCCC Execute Service 

Request service: Echo, Protected Typed File Read, Protected Typed File Write, Protected 

Typed Logical Write with Three Address Fields, Unprotected Read, Download 

Completed, Restart, Diagnostic Status, and Read Diagnostic Counters.   

The ENIP Fuzz CIP dissector is modified to allow the 

Find_Next_Object_Instance command to specify the number of maximum values 

returned. Both ENIP and CIP dissectors are modified to create the expanded packet views 

presented later in this document. 
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2. FUZZER MODIFICATIONS FOR CONTROLLOGIX 

In order to test a recently discovered PCCC vulnerability [9] affecting 

MicroLogix on the ControlLogix PLC, ENIP Fuzz’s handling of the Protected Typed 

Logical Read with Three Address Fields PCCC command requires modifications. The 

objective of this test is to determine whether the PCCC vulnerability in the MicroLogix 

implementation also exists in the ControlLogix software. Through analysis of 

ControlLogix network traffic, it is observed that the ControlLogix implements the CIP 

Forward_Open request differently. The Forward_Open request establishes a connection 

with a target device [15] and precedes the target test command request. ControlLogix 

PLCs require a 3-word request path [15], as opposed to the 2-word request path used on 

the MicroLogix. The request path specifies the required route the command packet 

travels to the remote target device [15]. ENIP Fuzz is modified to handle both types of 

request path.  

B. ENIP FUZZING TEST PLAN 

Previous ENIP Fuzz testing is limited to the RegisterSession command [9]. The 

current work expands the testing to test ENIP commands not tested by Tacliad [9] for 

vulnerabilities. Command fields are tested in isolation in order to provide a methodical 

evaluation of each command’s potential vulnerabilities. Table 6 summarizes the ENIP 

test plan. 

Table 6.   ENIP Test Plan 

Test 
Number ENIP Command  

Fuzzed 
Field Protocol Fuzzing Parameters 

T1 List Services/Identity/Interfaces 
Session 
Handle TCP 

0x00000000 to 
0xFFFFFFFF 

T2 List Services/Identity/Interfaces 
Session 
Handle UDP 

0x00000000 to 
0xFFFFFFFF 

T3 List Services/Identity/Interfaces Status TCP 
0x00000000 to 
0xFFFFFFFF 

T4 List Services/Identity/Interfaces Status UDP 
0x00000000 to 
0xFFFFFFFF 
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Test 
Number ENIP Command  

Fuzzed 
Field Protocol Fuzzing Parameters 

T5 List Services/Identity/Interfaces 
Sender 
Context TCP 

0x0000000000000000 
to 
0xFFFFFFFFFFFFFFFF 

T6 List Services/Identity/Interfaces 
Sender 
Context UDP 

0x0000000000000000 
to 
0xFFFFFFFFFFFFFFFF 

T7 List Services/Identity/Interfaces Options TCP 
0x00000000 and 
0xFFFFFFFF 

T8 List Services/Identity/Interfaces Options UDP 
0x00000000 and 
0xFFFFFFFF 

T9 UnRegisterSession 
Session 
Handle TCP 

0x00000000 to 
0xFFFFFFFF 

T10 UnRegisterSession Status TCP 
0x00000000 to 
0xFFFFFFFF 

T11 UnRegisterSession 
Sender 
Context TCP 

0x0000000000000000 
to 
0xFFFFFFFFFFFFFFFF 

T12 UnRegisterSession Options TCP 
0x00000000 and 
0xFFFFFFFF 

T13 
UnRegisterSession UDP 
Functionality N/A UDP 

Properly crafted ENIP 
encapsulated packet sent 
over UDP 

T14 SendRRData 
Session 
Handle TCP 

0x00000000 to 
0xFFFFFFFF 

T15 SendRRData Status TCP 
0x00000000 to 
0xFFFFFFFF 

T16 SendRRData 
Sender 
Context TCP 

0x0000000000000000 
to 
0xFFFFFFFFFFFFFFFF 

T17 SendRRData Options TCP 
0x00000000 and 
0xFFFFFFFF 

T18 SendRRData 
Interface 
Handle TCP 

0x00000000 and 
0xFFFFFFFF 

T19 SendRRData TimeOut TCP 0-65535 

T20 SendUnitData 
Session 
Handle TCP 

0x00000000 to 
0xFFFFFFFF 

T21 SendUnitData Status TCP 
0x00000000 to 
0xFFFFFFFF 

T22 SendUnitData 
Sender 
Context TCP 

0x0000000000000000 
to 
0xFFFFFFFFFFFFFFFF 

T23 SendUnitData Options TCP 
0x00000000 and 
0xFFFFFFFF 

T24 SendUnitData 
Interface 
Handle TCP 

0x00000000 and 
0xFFFFFFFF  
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Test 
Number ENIP Command  

Fuzzed 
Field Protocol Fuzzing Parameters 

T25 SendUnitData TimeOut TCP 0-65535 

T26 Reserved for Legacy 
Command 
Field TCP 

0x0001,0x0002, 
0x0005, 0x0067-
0x006E, and 0x0071-
0x00C7 

T27 Reserved for Legacy 
Command 
Field UDP 

0x0001,0x0002, 
0x0005, 0x0067-
0x006E, and 0x0071-
0x00C7 

T28 Reserved for Future Use 
Command 
Field TCP 

0x0006-0x0062 and 
0x00C8-0xFFFF 

T29 Reserved for Future Use 
Command 
Field UDP 

0x0006-0x0062 and 
0x00C8-0xFFFF 

 

1. ENIP ListServices Command 

The ENIP ListServices Request command returns the service(s) the target 

supports. To test the command, the Session Handle, Status, Sender Context, and Options 

fields are individually fuzzed using both TCP and UDP. The Session Handle field is 

tested with a combination of inputs ranging from 0x00000000 to 0xFFFFFFFF. The 

Status field is fuzzed in a similar manner. The Sender Context field is tested with data 

ranging from 0x0000000000000000 to 0xFFFFFFFFFFFFFFFF. The Options field is 

tested between 0x00000000 and 0xFFFFFFFF. Figures 8–11 illustrate the packet 

structure for the ListServices command sent over TCP and UDP, respectively.  

 
Fields encapsulated at the ENIP layer are highlighted. 

Figure 8.  An Example ENIP ListServices Request over TCP Packet 
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Figure 9.  Hexadecimal View of Example ENIP ListServices Request over TCP 
Packet 

 
Fields encapsulated at the ENIP layer are highlighted. 

Figure 10.  An Example ENIP ListServices Request over UDP Packet   

 

Figure 11.  Hexadecimal View of Example ENIP ListServices Request over 
UDP Packet 

2. ENIP UnRegisterSession Command 

The ENIP UnRegisterSession command terminates an existing ENIP session and 

closes the TCP connection associated with the particular ENIP session. An ENIP session 

is established using the ENIP RegisterSession command that was previously tested [9]. 

After receiving the UnRegisterSession command, the receiver initiates the closing of the 

TCP connection and does not reply with a response message. In the event this command 

is sent via UDP, the receiver replies with an error code 0x01, indicating an invalid or 

unsupported command [16]. The receiver always closes the TCP connection even if the 
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UnRegisterSession command contains unexpected values, e.g., invalid session 

handle [16].  

To test the UnRegisterSession commands, the Session Handle, Status, Sender 

Context, and Options fields are fuzzed. The Session Handle field is tested with a 

combination of inputs ranging from 0x00000000 to 0xFFFFFFFF. The Status field is 

fuzzed in a similar manner. The Sender Context field is tested from 

0x0000000000000000 to 0xFFFFFFFFFFFFFFFF. The Options field is tested with 

values between 0x00000000 and 0xFFFFFFFF. Aside from the Session Handle test, the 

other fields are fuzzed using a valid Session Handle in the packet.  

To determine if MicroLogix complies with the ENIP requirement that an 

UnRegisterSession command sent over UDP will be rejected with an error code of 0x01 

“invalid or unsupported command” [16], a single properly-crafted UDP 

UnRegisterSession command is included in the ENIP test suite. Figures 12 and 13 display 

a sample TCP ENIP UnRegisterSession Request. Figures 14 and 15 show a UDP version 

of the command for exception testing purposes. 

 
Fields encapsulated at the ENIP layer are highlighted. 

Figure 12.  An Example ENIP UnRegisterSession Request over TCP Packet 
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Figure 13.  Hexadecimal View of Example TCP ENIP UnRegisterSession 
Request Packet 

Fields encapsulated at the ENIP layer are highlighted. 

Figure 14.  An Example ENIP UnRegisterSession Request over UDP Packet. 

Figure 15.  Hexadecimal View of Example ENIP UnRegisterSession Request over 
UDP Packet 

3. ENIP SendRRData Command

SendRRData sends encapsulated messages from an originator to a target. When 

encapsulating CIP, the SendRRData command transports unconnected messages [16]. To 

test the SendRRData command fields, the following fields are fuzzed using a TCP 

connection: Session Handle, Status, Sender Context, Options, Interface Handle, and 

Timeout fields. The Session Handle field is tested with a combination of inputs ranging 

from 0x00000000 to 0xFFFFFFFF. The Status field is fuzzed in a similar manner. The 

Sender Context field is tested with data ranging from 0x0000000000000000 to 

0xFFFFFFFFFFFFFFFF. The Options field is tested between 0x00000000 and 
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0xFFFFFFFF. The Interface Handle is tested between 0x00000000 and 0xFFFFFFFF and 

the Timeout field is tested between 0 and 65535. For the Encapsulated Data field, a CIP 

Forward Open command is used. Figures 16 and 17 illustrate a sample SendRRData 

request containing an encapsulated CIP Forward Open Request [15].   
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Fields encapsulated at the ENIP layer are highlighted. 

Figure 16.  An Example ENIP SendRRData Request over TCP with an 
Encapsulated CIP Forward Open Request   
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Figure 17.  Hexadecimal View of Example ENIP SendRRData Request over 
TCP Packet 

4. ENIP SendUnitData Command 

The SendUnitData command [16] sends encapsulated connected messages that 

rely on their own end-to-end transport. Both originators and targets can initiate the 

SendUnitData command over a TCP connection. SendUnitData and SendRRData use the 

same packet structure. The Session Handle, Status, Sender Context, Options, Interface 

Handle, and Timeout fields are tested in the same manner as for SendRRData. Figures 18 

and 19 demonstrate a sample SendRRData packet structure.  
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Fields encapsulated at the ENIP layer are highlighted. 

Figure 18.  An Example ENIP SendUnitData Request over TCP with an 
Encapsulated CIP Get_Attribute_All Request 

Figure 19.  Hexadecimal View of Example EtherNet/IP SendUnitData Request 
over TCP Packet 
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5. ENIP Reserved for Legacy Use Commands 

In the CIP Networks Library: Volume 2 EtherNet/IP Adaptation of CIP 

specification [16], several commands are labeled as “Reserved for legacy use” (herein 

referred to as Legacy Use) with no explanation of their functionality or packet structure. 

The command codes for the Legacy Use commands are 0x0001, 0x0002, 0x0005, 

0x0067-0x006E, and 0x0071-0x00C7. These commands are tested to determine if 

MicroLogix handles them as defined by the ENIP specification, i.e., commands that are 

not supported by a target device shall not break the session or TCP connection. This 

testing also aims to discover unknown functionality of the legacy commands. Testing is 

conducted over both TCP and UDP connections. Figures 20 and 21 show the structure of 

a sample ENIP Legacy Use command sent over TCP. Figures 22 and 23 show the 

structure of a sample Legacy Use command sent over UDP. 

 
Fields encapsulated at the ENIP layer are highlighted. 

Figure 20.  An Example ENIP Legacy Use Request over TCP 

 

Figure 21.  Hexadecimal View of Example ENIP Legacy Use Request over 
TCP Packet 
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Fields encapsulated at the ENIP layer are highlighted. 

Figure 22.  An Example ENIP Legacy Use Request over UDP. 

 

Figure 23.  Hexadecimal View of Example ENIP Legacy Use Request over 
UDP Packet 

6. ENIP Reserved for Future Use Commands 

There are also designated ENIP commands that are labeled “Reserved for future 

use” (herein referred to as Future Use) in the CIP Networks Library: Volume 2 

EtherNet/IP Adaptation of CIP specification [16]. The ranges of the Future Use 

commands are 0x0006-0x0062 and 0x00C8-0xFFFF. These commands are tested to 

determine if MicroLogix handles them as defined by the ENIP specification, i.e., 

commands that are not supported by a target device shall not break the session or TCP 

connection. Figures 24 and 25 show the structure of an ENIP Future Use command sent 

over TCP. Figures 26 and 27 show the structure of an ENIP Future Use command sent 

over UDP.   
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Fields encapsulated at the ENIP layer are highlighted. 

Figure 24.  An Example ENIP Future Use Request over TCP 

 

Figure 25.  Hexadecimal View of Example ENIP Future Use Request over 
TCP Packet 

 
Fields encapsulated at the ENIP layer are highlighted. 

Figure 26.  An Example UDP ENIP Future Use Request 

 

Figure 27.  Hexadecimal View of Example UPD ENIP Future Use 
Response Packet 
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C. CIP FUZZING TEST PLAN 

Previous CIP fuzz testing is limited to the CIP NOP command [9]. This thesis 

expands the testing scope to include four additional CIP Common Services shown in the 

CIP Test Plan in Table 7. Command fields are tested in isolation. All tests use the ENIP 

command SendUnitData, which can only be used with TCP. 

Table 7.   CIP Test Plan 

Test 
Number CIP Command Fuzzed Field Protocol Fuzzing Parameters 

T30 Get_Attributes_All Class TCP 
Class 0x00-0xFF, 
Attribute 0x01 

T31 Get_Attributes_All Instance TCP 
Class 0x01, Attribute 
0x00-0xFF 

T32 Get_Attribute_List Class TCP 

Class 0x00-0xFF, 
Attribute_List 0x01, 
Instance 0x01 

T33 Get_Attribute_List Attribute_List TCP 

Class 0x01, 
Attribute_List 0x00-
0xFF, Instance 0x01 

T34 Get_Attribute_List Instance TCP 

Class 0x01, 
Attribute_List 0x01, 
Instance 0x00-0xFF 

T35 Get_Attribute_List Attribute_count TCP 

Max Attribute_count 
Length (Increasing 
lengths of 
Attribute_count field) 

T36 Get_Attribute_Single Class TCP 

Class 0x00-0xFF, 
Attribute 0x01, 
Instance 0x00 

T37 Get_Attribute_Single Instance TCP 

Class 0x01, Attribute 
0x01, Instance 0x00-
0xFF 

T38 Get_Attribute_Single Attribute TCP 

Class 0x01, Attribute 
0x00-0xFF, Instance 
0x01 

T39 Find_Next_Object_Instance Class TCP 

Class 0x00-0xFF, 
Instance 0x00, 
Maximum Returned 
Values 0x00 

T40 Find_Next_Object_Instance Instance TCP 

Class 0x01, Instance 
0x00-0xFF, Maximum 
Returned Values 0x00 

T41 Find_Next_Object_Instance 

Maximum 
Returned 
Values TCP 

Class 0x01, Instance 
0x00, Maximum 
Returned Values 0x00 
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1. CIP Get_Attributes_All 

The Get_Attributes_All command requests the contents of all instance or class 

attributes that the specified object supports [15]. Both Class and Attribute fields are 

individually fuzzed with values in the range of 0x00 to 0xFF. Figures 28 and 29 show the 

structure of a sample Get_Attributes_All command over TCP. 

 
Fields encapsulated at the CIP layer are highlighted. 

Figure 28.  An Example CIP Get_Attributes_All Request over TCP 

 

Figure 29.  Hexadecimal View of Example CIP Get_Attributes_All Request over 
TCP Packet 
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2. CIP Get_Attribute_List

The Get_Attribute_List Command requests the selected attributes of an object 

class or instance [15]. The Get_Attribute_List is an optional service [2]. The Class, 

Attribute, and Instance fields are individually fuzzed with values in the range of 0x00-

0xFF. The Attribute_count field is also tested by sending Get_Attribute_List requests 

with increasing values in the Attribute_count field up to 0xFFFF to determine the 

maximum number of attributes allowable. Figures 30 and 31 show the structure of a 

sample TCP Get_Attribute_List command. 

Fields encapsulated at the CIP layer are highlighted. 

Figure 30.  An Example CIP Get_Attribute_List Request over TCP 
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Figure 31.  Hexadecimal View of Example CIP Get_Attribute_List Request over 
TCP Packet 

3. CIP Get_Attribute_Single 

The Get_Attribute_Single command requests the contents of a specified attribute. 

This service is to be implemented for the Identity Object if any Class Attributes are 

implemented [15]. Class, Attribute, and Instance fields are fuzzed with values ranging 

from 0x00 to 0xFF. Figures 32 and 33 show the structure of a sample TCP 

Get_Attribute_Single command. 
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Fields encapsulated at the CIP layer are highlighted. 

Figure 32.  An Example CIP Get_Attribute_Single Request over TCP 

Figure 33.  Hexadecimal View of Example CIP Get_Attribute_Single Request 
over TCP Packet 
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4. CIP Find_Next_Object_Instance 

The Find_Next_Object_Instance command requests a list of Instance IDs 

associated with existing Object Instances that are accessible from the CIP subnet at the 

time the request is made [15]. The request command specifies the number of requested 

Instances, but the number of returned Instances can be less. If the Instance ID in the 

request is zero, the Instance ID that is numerically lowest in the Class is returned [15]. If 

the Instance ID in the request is less than the highest Instance ID in the Class, successful 

responses return the next Instance ID that is numerically higher than the Instance ID 

specified in the request [2]. If the Instance ID in the request is greater than or equal to the 

highest Instance ID in the Class, the value 0 is returned [15]. This service is only 

available at the Class level [15]. Testing is conducted on the Class, Instance, and 

Maximum Returned Values fields of this command with inputs ranging from 0x00 to 

0xFF. Figures 34 and 35 show the structure of a sample CIP Find_Next_Object_Instance 

command over TCP. 



 39 

 
Fields encapsulated at the CIP layer are highlighted. 

Figure 34.  An Example CIP Find_Next_Object_Instance Request over TCP 

 

Figure 35.  Hexadecimal View of Example CIP Find_Next_Object_Instance 
Request over TCP Packet 



40 

D. PCCC FUZZING TEST PLAN 

Previous MicroLogix PCCC fuzz testing is limited to the Execute PCCC 

command Protected Typed Logical Read with Three Address Fields [17].  This thesis 

expands the MicroLogix testing to fuzz PCCC commands not tested by Tacliad [9] for 

vulnerabilities.  Command fields are tested in isolation on the MicroLogix PLC in order 

to provide a methodical evaluation of each command’s potential vulnerabilities.   

Additionally, to determine if a recently discovered MicroLogix PCCC 

vulnerability affects the ControlLogix, the Protected Logical Read with Three Address 

Fields is tested on the ControlLogix with a MicroLogix fault-causing combination of 

field inputs.  Table 8 summarizes the PCCC test plan. 

Table 8.   PCCC Testing Plan 

Test 
Number PCCC Command 

Fuzzed 
Field Protocol Fuzzing Parameters 

MicroLogix Tests 
T42 Echo Data: 0 bytes TCP 0 Attached bytes 

T43 Echo 
Data: Max 
Length TCP 

Increasing number of attached 
bytes 

T44 Echo Data: 8 bytes TCP 8 Attached random bytes 
T45 Echo Data: 9 bytes TCP 9 Attached random bytes 

T46 Echo 
Data: 10 
bytes TCP 10 Attached random bytes 

T47 Echo 
Data: 40 
bytes TCP 40 Attached random bytes 

T48 Echo 
Data: 243 
bytes TCP 243 Attached random bytes 

T49 Echo 

Data: 
Maximum 
bytes returned 
by module 
with no errors TCP 

Maximum random bytes returned 
by module with no error  

T50 Echo 
Data: 248 
bytes TCP 248 Attached random bytes 

T51 Echo 
Data: 256 
bytes TCP 256 Attached random bytes 

T52 
Protected Typed 
File Read Size TCP Size (0x00-0xFF) 
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Test 
Number PCCC Command 

Fuzzed 
Field Protocol Fuzzing Parameters 

T53 
Protected Typed 
File Read Tag TCP Tag (0x0000-0xFFFF) 

T54 
Protected Typed 
File Read Offset TCP Offset (0x0000-0xFFFF) 

T55 
Protected Typed 
File Read File Type TCP File Type (0x00-0xFF) 

T56 
Protected Typed 
File Write Size TCP Size (0x00-0xFF) 

T57 
Protected Typed 
File Write Tag TCP Tag (0x0000-0xFFFF) 

T58 
Protected Typed 
File Write Offset TCP Offset (0x0000-0xFFFF) 

T59 
Protected Typed 
File Write File Type TCP File Type (0x00-0xFF) 

T60 
Protected Typed 
File Write Data TCP Data (0x00-0xFF) 

T61 

Protected Typed 
Logical Write with 
Three Address 
Fields Byte Size TCP Byte Size (0x00-0xFF) 

T62 

Protected Typed 
Logical Write with 
Three Address 
Fields File No. TCP File No. (0x00-0xFF) 

T63 

Protected Typed 
Logical Write with 
Three Address 
Fields File Type TCP File Type (0x00-0xFF) 

T64 

Protected Typed 
Logical Write with 
Three Address 
Fields Element No. TCP 

Element No. (0x00-0xFF and 
0xFF0000-0xFFFFFF) 

T65 

Protected Typed 
Logical Write with 
Three Address 
Fields 

Sub-Element 
No. TCP 

Sub-Element No. (0x00-0xFF 
and 0xFF0000-0xFFFFFF) 

T66 Unprotected Read Address TCP Address (0x0000-0xFFFF) 
T67 Unprotected Read Size TCP Size (0x00-0xFF) 

T68 
Diagnostic Status-
Functionality Test N/A TCP Properly formatted command 

T69 
Read Diagnostic 
Counters Address TCP Address (0x0000-0xFFFF) 
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Test 
Number PCCC Command 

Fuzzed 
Field Protocol Fuzzing Parameters 

T70 
Read Diagnostic 
Counters Size TCP Size (0x00-0xFF) 

T71 
Restart-
Functionality Test N/A TCP Properly formatted command 

T72 

Download 
Completed-
Functionality Test N/A TCP Properly formatted command 

ControlLogix Tests 

T73 

Protected Typed 
Logical Read with 
Three Address 
Fields 

File No., File 
Type TCP 

File No. (0x2-0x8), File Type 
(0x47-0x48) 

 

1. PCCC Echo Command 

The Echo command enables a user to check the integrity of a communication link.  

The receiving module replies to a request with the same data in the original transmission.  

According Allen-Bradley’s DF1 Protocol and Command Set specification [17], this 

command is compatible with the MicroLogix 1000, a member of the MicroLogix 1100 

family of products, and should transmit a maximum of 243 bytes of data.  In order to test 

the maximum data allowable in an Echo command, the fuzzing device sends commands 

with an increasing number of repeating bytes, starting from 0 to the maximum size that 

the receiving module will reply with no errors, while monitoring SUT responses. Echo 

commands are tested with random bytes using the following lengths: 0, 8, 9, 10, 243, 

248, 256, and the observed maximum size returned with no errors. Figures 36 and 37 

illustrate the structure of the PCCC Echo command.  
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Fields encapsulated at the PCCC layer are highlighted. 

Figure 36.  An Example PCCC Echo Request with Two Data Bytes over TCP 

Figure 37.  Hexadecimal View of Example PCCC Echo Request over TCP Packet. 
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2. PCCC Protected Typed File Read 

The Protected Typed File Read command reads data from an open file [17].  Four 

fields are fuzz tested: Size, Tag, Offset, and File Type.  The one-byte fields, Size and File 

Type, are tested with random inputs from 0x00 to 0xFF.  The two-byte fields, Tag and 

Offset, are tested with random inputs from 0x0000 to 0xFFFF.  The SUT is expected to 

provide successful read responses. Figures 38 and 39 illustrate the structure of an 

example packet. 

 

 
Fields encapsulated at the PCCC layer are highlighted. 

Figure 38.  An Example PCCC Protected Typed File Read Request 
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Figure 39.  Hexadecimal View of Example PCCC Protected Typed File 
Read Packet 

3. PCCC Protected Typed File Write

The Protected Typed File Write command writes data to an open file in the PLC 

[17].  Testing is conducted on five fields: Size, Tag, Offset, File Type, and Data.  The 

one-byte fields, Size and File Type, are tested with random inputs from 0x00 to 0xFF. 

The two-byte fields, Tag and Offset, are tested with random inputs from 0x0000 to 

0xFFFF.  The data field is tested with a two-byte size with random inputs from 0x0000 to 

0xFFFF.  The SUT is expected to provide successful write responses.  Figures 40 and 41 

illustrate the structure of an example packet. 
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Fields encapsulated at the PCCC layer are highlighted. 

Figure 40.  An Example PCCC Protected Typed File Write Request 

 

Figure 41.  Hexadecimal View of Example PCCC Protected Typed File 
Write Packet 
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4. PCCC Protected Typed Logical Write with Three Address Fields 

The Protected Logical Write with Three Address Fields command writes data to a 

logical address in the PLC’s processor [17]. The specification [17] is unclear whether the 

MicroLogix family of PLCs supports this command. Specifically, while the table that 

summarizes the PCCC commands and compatible processors indicates MicroLogix 

supports the command, the detailed description of this particular command omits 

MicroLogix as a supporting platform.  Based on previous testing of the Protected Logical 

Read with Three Address Fields command [9], the MicroLogix is assumed to support the 

command. Testing is conducted on the fields Byte Size, File Number, and File Type with 

inputs ranging from 0x00 to 0xFF.  Element Number, and Sub-element Number are one-

byte fields that can expand to three bytes when the first byte is set to 0xFF. In this case, 

the second and third bytes identify the expanded sub-element [17].  For this reason, these 

fields are tested in the one-byte configuration with inputs ranging from 0x00 to 0xFF and 

in the three-byte configuration with inputs ranging from 0xFF0000 to 0xFFFFFF.  The 

Data field is not fuzzed in an effort to avoid overwriting memory space with unknown 

functionality.  Figures 42 and 43 show the structure of an example packet. 
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Fields encapsulated at the PCCC layer are highlighted. 

Figure 42.  An Example PCCC Protected Typed Logical Write with Three 
Address Fields Request 
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Figure 43.  Hexadecimal View of Example PCCC Protected Typed Logical Write 
with Three Address Fields Request over TCP Packet 

5. PCCC Unprotected Read 

The Unprotected Read command requests data from a common interface file on 

the PLC [17] Fuzz testing is conducted on two fields: Address and Size.  The two-byte 

Address field is fuzzed with random numbers between 0x0000 to 0xFFFF.  The one-byte 

Size field is fuzzed with inputs between 0x00 to 0xFF. The expected result of the 

MicroLogix testing is a successful read response from the SUT.  Figures 44 and 45 show 

the structure of an example packet.  
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Fields encapsulated at the PCCC layer are highlighted. 

Figure 44.  An Example PCCC Unprotected Read Request 

 

Figure 45.  Hexadecimal View of Example PCCC Unprotected Read Packet 
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6. PCCC Diagnostic Status

The Diagnostic Status command requests up to 244 bytes of status information 

from an interface module.  Per the specification [17], the MicroLogix 1000 

implementation of the command provides information including firmware, processor 

mode, and processor random access memory (RAM) size for the interface (24 bytes 

[17]). Documentation specific to the MicroLogix 1100 implementation of the command 

is not available. This command has no input parameter to fuzz, and thus, it is only 

functionally tested to determine MicroLogix 1100-specific responses.  Figures 46 and 47 

show the structure of an example packet. 

Fields encapsulated at the PCCC layer are highlighted. 

Figure 46.  An Example PCCC Diagnostic Status over TCP Request 
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Figure 47.  Hexadecimal View of Example PCCC Diagnostic Status Request over 
TCP Packet 

7. PCCC Read Diagnostic Counters 

Per the specification [17], the MicroLogix 1000 implementation of the command 

is used to read a module’s diagnostic timers and counters by requesting up to 244 bytes of 

data from the programmable read-only memory (PROM) or RAM of an interface module 

[17]. The specification does not provide any information specific to the MicroLogix 1100 

implementation of the command. This command has two input parameters: Address and 

Size. The Address field is fuzzed between 0x0000 and 0xFFFF with a Size field set to 

0x01.  The Size field is fuzzed between 0x00 and 0xFF with the Address field set to 

0x0000. Figures 48 and 49 illustrate the structure of an example PCCC Read Diagnostic 

Counters packet.  
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Fields encapsulated at the PCCC layer are highlighted. 

Figure 48.  An Example PCCC Read Diagnostic Counters Request 
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Figure 49.  Hexadecimal View of Example PCCC Read Diagnostic Counters 
Request Packet 

8. PCCC Restart 

The PLC Restart command is intended solely for the PLC-3 and is not compatible 

with the MicroLogix family per the specification [17]. The command terminates any 

upload or download, revokes upload/download privileges, and initializes a PLC-3 restart.  

This command is tested with a properly formatted command in order to determine 

MicroLogix 1100 functionality.  Figures 50 and 51 illustrate the structure of an example 

PCCC Restart request packet. 
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Fields encapsulated at the PCCC layer are highlighted. 

Figure 50.  An Example PCCC Restart Request 
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Figure 51.  Hexadecimal View of Example PCCC Restart Request Packet 

9. PCCC Download Completed 

The Download Completed command returns a processor to its previous mode 

upon completion of a complete system download [17].  This command is not intended for 

the MicroLogix PLC family.  Functionality testing is conducted to observe MicroLogix 

1100 responses to an illegal command.  Figures 52 and 53 illustrate the structure of an 

example PCCC Download Completed packet. 
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Fields encapsulated at the PCCC layer are highlighted. 

Figure 52.  An Example PCCC Download Completed Request 

Figure 53.  Hexadecimal View of Example PCCC Download Completed Request 
Packet 
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10. PCCC Protected Logical Read with Three Address Fields Command 
on ControlLogix 

The Protected Logical Read with Three Address Fields is tested on the 

ControlLogix PLC to address this thesis’ secondary research question: whether 

vulnerabilities discovered on earlier model AB/RA PLCs affect more advanced and 

modern AB/RA PLCs.  Previous ENIP Fuzz testing led to the discovery of a vulnerability 

in MicroLogix’s implementation of the command.  When any combination of a File 

Number 0x2 to 0x8 and File Type of 0x47 or 0x48 is present in the command, the 

MicroLogix 1100 experiences a Major Error (0x8) and enters a fault state [9].   

To test the ControlLogix, the fuzzer sends Protected Logical Read with Three 

Address Field commands with a File Number between 0x2 and 0x8 and File Type of 

0x47 or 0x48 to determine if the ControlLogix is susceptible to the same vulnerability 

affecting MicroLogix PLCs. Figures 54 and 55 illustrate the structure of an example 

PCCC Download Completed packet. 
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Fields encapsulated at the PCCC layer are highlighted. 

Figure 54.  An Example PCCC Protected Logical Read with Three Address 
Fields Request 

Figure 55.  Hexadecimal View of Example PCCC Protected Logical Read with 
Three Address Fields Request Packet 
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V. TEST ANALYSIS 

This chapter presents the results of the fuzzed commands and a detailed analysis 

for each test case examined. Results are summarized first and subsequently expanded 

upon in the individual command result sections. Wireshark captures of SUT responses 

are included in Appendixes A through C. 

A. ENIP TEST RESULTS 

The ENIP tests do not cause any faults or disruption of service to the MicroLogix 

SUT. However, the testing does reveal several instances where the MicroLogix 

implementation of ENIP deviates from the specification [16]. Table 9 summarizes both 

expected and observed responses to the test cases. 

Table 9.   ENIP Fuzz Testing Results 

Test 
Number ENIP Command  

Fuzzed 
Field Protocol 

Expected 
Fuzzed 
Response 

Actual 
Fuzzed 
Response 

T1 
List 
Services/Identity/Interfaces 

Session 
Handle TCP 

Session 
Handle 
repeated in 
response 
(ignored by 
target) 

Session 
Handle 
repeated in 
response  
(ignored by 
target) 

T2 
List 
Services/Identity/Interfaces 

Session 
Handle UDP 

Session 
Handle 
repeated in 
response 

Session 
Handle 
repeated in 
response 

T3 
List 
Services/Identity/Interfaces Status TCP TCP ACK TCP ACK 

T4 
List 
Services/Identity/Interfaces Status UDP No response No response 

T5 
List 
Services/Identity/Interfaces 

Sender 
Context TCP 

Sender 
Context 
repeated in 
response 

Sender 
Context 
repeated in 
response 

T6 
List 
Services/Identity/Interfaces 

Sender 
Context UDP 

Sender 
Context 
repeated in 
response 

Sender 
Context 
repeated in 
response 
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Test 
Number ENIP Command  

Fuzzed 
Field Protocol 

Expected 
Fuzzed 
Response 

Actual 
Fuzzed 
Response 

T7 
List 
Services/Identity/Interfaces Options TCP 

Packet 
discarded 

Deviation: 
See 
ListServices 
Results 
section 

T8 
List 
Services/Identity/Interfaces Options UDP 

Packet 
discarded 

Deviation: 
See 
ListServices 
Results 
section 

T9 UnRegisterSession 
Session 
Handle TCP 

Error 0x03 
TCP close 

Deviation: 
Error 0x03 
No TCP close 

T10 UnRegisterSession Status TCP 
Error 0x03 
TCP close 

Deviation: 
Error 0x03 
No TCP close 

T11 UnRegisterSession 
Sender 
Context TCP TCP close TCP close 

T12 UnRegisterSession Options TCP 
Error 0x03 
TCP close 

Deviation: 
Error 0x03, 
no TCP close 

T13 
UnRegisterSession UDP 
Functionality N/A UDP Error 0x01 Error 0x01 

T14 SendRRData 
Session 
Handle TCP Error 0x03 

Deviation: 
See 
SendRRData 
Results 
Section 

T15 SendRRData Status TCP TCP ACK 

Deviation: 
See 
SendRRData 
Results 
Section 

T16 SendRRData 
Sender 
Context TCP 

Successful 
Response 
with Sender 
Context 
returned 

Successful 
Response 
with Sender 
Context 
returned 

T17 SendRRData Options TCP TCP ACK 

Deviation: 
See 
SendRRData 
Results 
Section 

T18 SendRRData 
Interface 
Handle TCP Error 0x03 Error 0x03 
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Test 
Number ENIP Command  

Fuzzed 
Field Protocol 

Expected 
Fuzzed 
Response 

Actual 
Fuzzed 
Response 

T19 SendRRData TimeOut TCP Error 0x03 

Deviation: 
See 
SendRRData 
Results 
Section 

T20 SendUnitData 
Session 
Handle TCP Error 0x03 

Deviation: 
See 
SendUnitData 
Results 
Section 

T21 SendUnitData Status TCP TCP ACK 

Deviation: 
See 
SendUnitData 
Results 
Section 

T22 SendUnitData 
Sender 
Context TCP 

Successful 
Response 
with Sender 
Context 
returned 

Successful 
Response 
with Sender 
Context 
returned 

T23 SendUnitData Options TCP TCP ACK 

Deviation: 
See 
SendUnitData 
Results 
Section 

T24 SendUnitData 
Interface 
Handle TCP Error 0x03 Error 0x03 

T25 SendUnitData TimeOut TCP Error 0x03 

Deviation: 
See 
SendUnitData 
Results 
Section 

T26 Reserved for Legacy 
Command 
Field TCP 

Error 0x03 or 
success 

Error 0x03 or 
success 

T27 Reserved for Legacy 
Command 
Field UDP 

Error 0x01 or 
success 

Error 0x01 or 
success 

T28 Reserved for Future Use 
Command 
Field TCP Error 0x03 Error 0x03 

T29 Reserved for Future Use 
Command 
Field UDP Error 0x01 Error 0x01 
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1. ENIP ListServices Results 

a. T1 and T2 Test Cases  

The SUT responds as expected to the ListServices commands (TCP and UDP) 

with non-zero values in the Session Handle field, i.e., by ignoring the specified session 

handle and returning the same session handle for the established session in the response.   

b. T3 and T4 Test Cases  

When non-zero values are sent in the Status field, the SUT responds as expected, 

i.e., by returning a TCP FIN, ACK if the command is sent over TCP and dropping the 

packet if the command is sent over UPD.  

c. T5 and T6 Test Cases  

The SUT responds predictably to the ListServices commands with fuzzed Sender 

Context fields over both TCP and UDP, i.e., by returning the same Sender Context value 

in the response.   

d. T7 and T8 Test Cases 

Per the ENIP specification, receivers must discard any ENIP ListServices packets 

with non-zero values in the Options field [16]. For both TCP and UDP, the SUT does not 

discard the ListServices command with a non-zero value in the Options field, but sends a 

ENIP response with a 0x03 “Incorrect data” [16] error code. 

2. ENIP UnRegisterSession Results  

a. T9 Test Case 

For the Session Handle field, the MicroLogix implementation of the 

UnRegisterSesssion command returns a 0x03 “Incorrect data” [16] response and does not 

terminate the TCP connect as expected. This is a deviation from the specification that 

dictates a “receiver shall not reject the UnRegisterSession due to unexpected values in the 

encapsulation header,” including invalid Session Handles and non-zero Status 

inputs [16]. 
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b. T10 Test Case

When the UnRegisterSession command is fuzzed with invalid Status codes and 

valid Session Handles, the MicroLogix returns a 0x03 “Incorrect data” [16] error and the 

TCP connection is not terminated.  This is a deviation from the specification observed in 

T9 with invalid Session Handle inputs. 

c. T11 Test Case

When fuzzing the Sender Context field, the MicroLogix implementation of the 

UnRegisterSesssion command returns expected responses and terminates the TCP 

connection. This complies with the ENIP requirement that receivers do not reject 

UnRegisterSession commands with unexpected values in the encapsulation header but 

close the underlying TCP connection instead [16]. 

d. T12 Test Case

When the Options field is set to a non-zero number, the SUT returns a 0x03 

“Incorrect data” [16] response and the TCP connection is not terminated. The 

specification provides conflicting guidance on the expected behavior SUT behavior. Per 

the CIP Networks Library: Volume 2 EtherNet/IP Adaptation of CIP specification, “the 

receiver shall discard packets with a non-zero option field” [16]. The specification also 

says that the receiver shall not reject UnRegisterSession commands due to “unexpected 

values in the encapuslation header,” including non-zero Options and that the TCP 

connection shall be terminated [16]. 

In order to confirm the TCP session is not closed by UnRegisterSession request 

with an invalid Options field, an additional test is conducted. Following an 

UnRegisterSession command with a fuzzed Options field, a CIP Forward Open command 

is sent to the PLC. The SUT responds to the request with “Success” packet, confirming 

that the session remains open.   
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e. T13 Test Case 

The MicroLogix complies with the ENIP requirement that an UnRegisterSession 

command sent over UDP shall be rejected with an 0x01 “Invalid or Unsupported” [16] 

error code. 

3. ENIP SendRRData Results 

There are multiple fields where the AB/RA MicroLogix’s implementation of the 

ENIP protocol deviates from the expected responses derived from the CIP Networks 

Library: Volume 2 EtherNet/IP Adaptation of CIP [16] specification. The expected and 

observed behaviors of each fuzzed field are discussed below.  

a. T14 Test Case 

The Session Handle is returned by the target in the ENIP Register Session reply 

packet, and is to be used in subsequent encapsulation commands within the ENIP session. 

When tested with session handles other than the valid handle of the ENIP session, the 

reply is not a 0x03 “Incorrect data” [16] error code as expected, but a successful service 

response. The CIP data in the response is identical to a message with a valid session 

handle (see Appendix A). However, the Wireshark protocol analyzer does not properly 

format the CIP Connection Manager data in replies to the invalid session handles. This is 

hypothesized to be a result of Wireshark attempting to match request/reply packet pairs 

with valid session handles.   

b. T15 Test Case 

The Status field indicates whether a receiver successfully executes a command. A 

zero response indicates success. Any other responses correlate to general error codes. 

According to the ENIP specification, the receiver must ignore all ENIP requests with a 

non-zero Status field, i.e., does not return a reply [16]. When testing the Status field of 

the SendRRData command, requests with Status fields between 0x00000000 and 

0x0000FFFF are accepted and the SUT provides a successful ENIP-encapsulated CIP 

response with Status code 0x00000000. This deviates from the specification requirements 

[16]. When requests are sent with Status codes between 0x00010000 and 0xFFFFFFFF, 
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the SUT performs as expected and provides no ENIP or ENIP-encapsulated CIP 

response. Only a TCP ACK packet is sent from the SUT to the fuzzer. 

c. T16 Test Case

The Sender Context field allows a sender to place any data in the field. The 

receiver returns the same data in its response, which can be used by the sender to match 

requests with their replies [16]. For all tests, the returned values of this field match the 

expected values. 

d. T17 Test Case

The Options field allows a sender to provide additional information about the 

command [16]. For the SendRRData Request, the specification dictates that the Options 

field be set to zero, and that the “receiver shall discard any packets with a non-zero 

option field” [16]. When tested with different non-zero options, the SUT returns 

successful replies, i.e., the returned status is 0x00000000. 

e. T18 Test Case

The Interface Handle field identifies the intended communications interface of the 

command and must be set to zero for the SendRRData request [16]. When this field is set 

to a non-zero value, the SUT returns an ENIP response with the error code 0x03, as 

expected.   

f. T19 Test Case

The Timeout field indicates the number of seconds the requested operation shall 

persist until it expires. When the field is set to zero, the timeout of the ENIP protocol 

assumes the timeout of the encapsulated protocol (CIP). When encapsulating CIP, the 

sender must set the Timeout field to zero and the receiver is to ignore the field [16]. The 

expected result for testing non-zero inputs in the Timeout field with CIP encapsulation is 

an ENIP response with the 0x03 “Incorrect data” [16] error code. However, the SUT 

returns successful ENIP-encapsulated CIP responses with the Timeout field set to 1024. 
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4. ENIP SendUnitData Results 

Similar deviations from specification observed with SendRRData testing are also 

present in the SendUnitData testing.   

a. T20 to T23 Test Cases 

The fuzzing of Session Handle, Status, and Options fields demonstrate the same 

unexpected behavior observed in the SendRRData responses described above.  

b. T24 Test Case 

When the Interface Handle field is set to a non-zero value, the SUT returns an 

ENIP response with the 0x03 “Incorrect data” [16] error code, as expected.   

c. T25 Test Case 

The testing of the Timeout field shows unexpected behavior. The expected result 

for testing non-zero inputs in the Timeout field with CIP encapsulation is an ENIP 

response with a 0x03 “Incorrect data” [16] error code. However, the SUT returns 

successful ENIP-encapsulated CIP responses with the Timeout field set to zero. The 

unexpected SendUnitData responses are different than the unexpected SendRRData 

responses fuzzed under the same conditions. SendUnitData returns successful responses 

with the Timeout field set to zero, whereas SendRRData returns successful responses 

with the Timeout field set to 1024. 

5. ENIP Reserved for Legacy Use Results 

a. T26 and T27 Test Cases 

The expected responses for the Legacy Use commands over TCP and UDP are a 

successful response, a 0x03 “Incorrect data” [16] response, or a 0x01 “Invalid or 

Unsupported” [16] response. Without knowledge of the packet structure for the Legacy 

Use commands, testing is limited to test packets that only include the individual Legacy 

Use command with no additional data attached. All commands sent over TCP return 

ENIP responses with the error code 0x03, except for the command code 0x01, which 

returns a successful ENIP response with the SUT’s IP address in the data field. The 
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Wireshark dissector recognized the commands 0x72 and 0x73 as Indicate Status and 

Cancel, respectively [16]. UDP-sent commands behave similarly to TCP-sent commands 

with regards to returning a successful response to command code 0x01. For all other 

command codes, UDP-sent commands returned the error code 0x01. 

6. ENIP Reserved for Future Use Results 

a. T28 and T29 Test Cases 

Responses to the Future Use commands are expected to be an error code, either 

0x03 or 0x01. The SUT returns the error code 0x03 status codes for TCP test cases and 

the error code 0x01 for UDP test cases. 

B. CIP TEST RESULTS 

The CIP Fuzzing tests do not cause any faults or disruption of service to the 

MicroLogix SUT. The test results indicate that MicroLogix does not support several of 

the tested commands. Table 10 summarizes both the expected and observed responses to 

the test cases. 

Table 10.   CIP Fuzz Testing Results  

Test 
Number CIP Command  Fuzzed Field 

Expected Fuzzed 
Response 

Actual Fuzzed 
Response 

T30 Get_Attributes_All Class Class specific 

Class specific  
See results 
below 

T31 Get_Attributes_All Instance 

Attribute or Path 
destination 
unknown 
responses 

Attribute or 
Path destination 
unknown 
responses 

T32 Get_Attribute_List Class 

Attribute, Service 
not supported, or 
Path destination 
unknown 
responses 

Service not 
supported or 
Path destination 
unknown 
responses 

T33 Get_Attribute_List Attribute_list 

Attribute, Service 
not supported, or 
Path destination 
unknown 
responses 

Service not 
supported or 
Path destination 
unknown 
responses 
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Test 
Number CIP Command  Fuzzed Field 

Expected Fuzzed 
Response 

Actual Fuzzed 
Response 

T34 Get_Attribute_List Instance 

Attribute, Service 
not supported, or 
Path destination 
unknown 
responses 

Service not 
supported or 
Path destination 
unknown 
responses 

T35 Get_Attribute_List Attribute_count 

Error status or no 
response for 
Attribute_count 
fields exceeding 
maximum 
allowable 

TCP ACK for 
values greater 
than 223 
Attributes in 
Attribute_count 

T36 Get_Attribute_Single Class Class specific 

Class specific 
See results 
below 

T37 Get_Attribute_Single Instance 

Attribute not 
supported or 
Service not 
supported 

Service not 
supported, 
Attribute not 
supported, or 
Path destination 
unknown 

T38 Get_Attribute_Single Attribute 
Service not 
supported 

Service not 
supported or 
Attribute not 
supported 

T39 Find_Next_Object_Instance Class 

Service not 
supported or Path 
destination 
unknown 

Service not 
supported or 
Path destination 
unknown 

T40 Find_Next_Object_Instance Instance 

Service not 
supported or Path 
destination 
unknown 

Service not 
supported or 
Path destination 
unknown 

T41 Find_Next_Object_Instance 

Maximum 
Returned 
Values 

Service not 
supported 

Service not 
supported 

 

1. CIP Get_Attributes_All Results 

To determine a baseline MicroLogix response for the Get_Attributes_All 

command, a packet with Class 0x01 (Identity) and Instance 0x01 is sent to the SUT. All 

CIP devices are required to support Instance 0x01 of the Identity Object [15]. The 

MicroLogix returns a successful CIP response with the seven required attributes: Vendor 

ID, Device Type, Product Code, Major and Minor Revisions, Status, Serial Number, and 
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Product Name (see Table 11). The thirteen optional or conditional attributes defined in 

the specification are not observed in the MicroLogix responses [15].  

Table 11.   Identity Object Instance Attributes. Adapted from [15]. 

 
 

a. T30 Test Case 

When the Class field is fuzzed with values from 0x0 to 0xFF, with Instance 0x01, the 

following behavior was observed: 

• Three different Class field inputs between 0x00 and 0xFF return 
successful CIP packets with attribute information: 0x01 (Identity), 0xF5 
(TCP/IP Interface), and 0xF6 (Ethernet Link).  

• Three Class field inputs return General Status 0x08 “Service not 
supported” [15] responses: 0x02 (Message Router), 0x06 (Connection 
Manager), and 0x67 (PCCC Object).  

• The remaining Class inputs return CIP responses with General Status 0x05 
“Path destination unknown” [15]. This code is used when the target device 
does not recognize a class, instance or structure element in the object’s 
request [15]. 
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b. T31 Test Case 

When fuzzing the Instance field with values from 0x00 to 0xFF with the Class 

field set to 0x01, the SUT responds successfully to two Instance inputs: 0x00 and 0x01. 

The responses for all other Instance inputs indicate a General Status 0x05 “Path 

destination unknown” [15]. This is an expected response.   

The Instance 0x00 is handled as a special case because it references the Class 

instead of a particular Instance within the class [15]. Therefore, the response of the 

Instance 0x00 is at the Class level as shown in Table 12.  

Table 12.   Identity Object Get_Attributes_All Response for Instance 0x00. 
Source: [15]. 

 
 

The other successful response, Instance 0x01, is used as a baseline command and 

is previously explained.  

2. CIP Get_Attribute_List Results 

To determine baseline functionality, a request is sent to the SUT with the 

following parameters: Class 0x01, Instance 0x01, and Attribute 0x01. There are two 

possible expected SUT responses. If the SUT supports the command, it is to respond with 

the requested Attribute (Vendor ID) information. However, since Get_Attribute_List is 

an optionally supported command at the Class and Instance level [15], the SUT may not 

provide the requested Attribute response. When tested, the MicroLogix responds with a 

General Status 0x08 “Service not supported” [15] packet.   
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a. T32 Test Case

To test the Class field with values 0x00 to 0xFF, the Instance and Attribute fields 

are set to 0x01 while Class is fuzzed. The SUT returns a General Status 0x08 “Service 

not supported” [15] CIP response for six of the Class field inputs: 0x01 (Identity), 0x02 

(Message Router), 0x06 (Connection Manager), 0x67 (PCCC Object), 0xF5 (TCP/IP 

Interface), and 0xF6 (Ethernet Link). All other responses have a General Status of 0x05 

“Path destination unknown” [15].   

b. T33 Test Case

While testing the Instance field with values 0x00 to 0xFF, the Class and Attribute 

fields are set to 0x01. Only Instances 0x00 and 0x01 return General Status 0x08 “Service 

not supported” [15] responses. All other tested Instances return General Status 0x05 

“Path destination unknown” [15] responses.  

c. T34 Test Case

When fuzzing the Attribute field with the Class and Instance fields set 0x01, the 

SUT returns General Status 0x08 “Service not supported” [15] responses for each 

Attribute tested. The tested Attribute values are 0x00 to 0xFF.   

d. T35 Test Case

To determine the effects of exceeding the maximum number of attributes that can 

be requested, packets with increasing Attribute_Count are sent to the SUT. Attribute IDs 

1 through 7 are utilized and repeated due to their observed presence from the 

Get_Attributes_All response previously conducted. The SUT returns CIP responses with 

Status 0x08 “Service not supported” [15] for Get_Attribute_List requests with 

Attribute_Counts from 0 to 223. When the SUT receives a Get_Attribute_List request 

with an Attribute_Count of 224 or greater, it does not send a CIP response. The SUT 

sends only a TCP ACK in response.   
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3. CIP Get_Attribute_Single Results 

The Get_Attribute_Single request is an optional command and thus it is 

hypothesized that the response would be a ‘Service not supported” [15] message. Per the 

specification [15], the Identity Object only supports this command if Class Attributes are 

implemented. The observed response from the Get_Attributes_All tests for the Identity 

Object with Instance 0x00 and Attribute 0x01 return default values, indicating no Class 

Attributes are set for the Identity Object.   

a. T36 Test Case 

To test the Class field, the Instance field is set to 0x00 and the Attribute field is 

set to 0x01. The SUT returns a “Service not supported” CIP response for six of the Class 

field inputs: 0x01 (Identity), 0x02 (Message Router), 0x06 (Connection Manager), 0x67 

(PCCC Object), 0xF5 (TCP/IP Interface), and 0xF6 (Ethernet Link). All other responses 

have a General Status 0x05 “Path destination unknown” [15].   

b. T37 Test Case 

When testing the Instance field, the Class and Attribute fields are set to 0x01. The 

SUT returns “Service not supported” messages when it receives request packets with the 

Instance field set to 0x00. When it receives requests with Instance 0x01, the SUT returns 

the General Status 0x14 “Attribute not supported” [15] messages. All other Instances 

returned General Status 0x05 “Path destination unknown” [15] responses. 

c. T38 Test Case 

To test the Attribute field, packets are sent with the Class and Instance fields set 

to 0x01. The SUT responds to all fuzzed Attribute inputs with the General Status 0x14 

“Attribute not supported” [15] messages.   

4. CIP Find_Next_Object_Instance Results 

In order to establish baseline behavior for the Find_Next_Object_Instance 

request, test packets with Class 0x01 (Identity) and Instance 0x00 fields are sent to the 

SUT. The Identity Object conditionally supports the command if non-consecutive 
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Instances exit [15]. From the Get_Attributes_All test using the Identity Object, no non-

consecutive Instances are observed. Therefore, our expected and observed behavior of the 

SUT is to return a General Status 0x08 “Service not supported” [15] message. 

a. T39 Test Case 

To test the Class field, the Instance field is set to 0x00 while Class is fuzzed. The 

SUT returns a General Status 0x08 “Service not supported” [15] CIP response for six of 

the Class field inputs: 0x01 (Identity), 0x02 (Message Router), 0x06 (Connection 

Manager), 0x67 (PCCC Object), 0xF5 (TCP/IP Interface), and 0xF6 (Ethernet Link). All 

other responses have a General Status 0x05 “Path destination unknown” [15].   

b. T40 Test Case 

When testing the Instance field, Class is set to 0x01. Requests with Instance 0x00 

and 0x01 return General Status 0x08 “Service not supported” [15] responses. All other 

fuzzed Instance inputs return General Status 0x05 “Path destination unknown” [15] 

messages.   

c. T41 Test Case 

To test the Maximum Returned Values field, Class is set to 0x01 and Instance is 

set to 0x00. The Maximum Returned Values field is tested with inputs between 0x00 and 

0xFF. All requests return General Status 0x08 “Service not supported” [15] responses.   

C. PCCC TEST RESULTS 

The PCCC tests do not cause any faults or disruption of service to the MicroLogix 

1100 (T42-T72) or ControlLogix 1756-L71 (T73) SUTs. Table 13 summarizes both 

expected and observed responses to the test cases. The N/A indicator in the Fuzzed Field 

column indicates the command is functionally tested only. 
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Table 13.   PCCC Fuzz Testing Results 

Test 
Number PCCC Command Fuzzed Field 

Expected 
Fuzzed 
Response 

Actual Fuzzed 
Response 

MicroLogix Tests 

T42 Echo Data: 0 bytes 

Response with 
0 bytes 
attached 

Response with 0 bytes 
attached 

T43 Echo 
Data: Max 
Length 

243-byte 
maximum 247-byte maximum 

T44 Echo Data: 8 bytes 

Response with 
8 bytes 
attached 

Response with 8 bytes 
attached 

T45 Echo Data: 9 bytes 

Response with 
9 bytes 
attached 

Response with 9 bytes 
attached 

T46 Echo Data: 10 bytes 

Response with 
10 bytes 
attached 

Response with 10 bytes 
attached 

T47 Echo Data: 40 bytes 

Response with 
40 bytes 
attached 

Response with 40 bytes 
attached 

T48 Echo 
Data: 
243 bytes 

Response with 
243 bytes 
attached 

Response with 243 
bytes attached 

T49 Echo 

Data: Maximum 
bytes returned by 
module with no 
errors 

Response with 
same number 
of bytes 
attached as 
request 

Response with 247 
bytes attached 

T50 Echo Data: 248 bytes 
Response with 
error message 

“Routing failure, 
request packet too 
large” [17] response 

T51 Echo Data: 256 bytes 
Response with 
error message 

“Routing failure, 
request packet too 
large” [17] response 

T52 
Protected Typed 
File Read Size 

Response with 
requested data 
or error 
message  

“illegal command or 
format” [17] response 

T53 
Protected Typed 
File Read Tag 

Response with 
requested data 
or error 
message 

“illegal command or 
format” [17] response 

T54 
Protected Typed 
File Read Offset 

Response with 
requested data 
or error 
message 

“illegal command or 
format” [17] response 
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Test 
Number PCCC Command Fuzzed Field 

Expected 
Fuzzed 
Response 

Actual Fuzzed 
Response 

T55 
Protected Typed 
File Read File Type 

Response with 
requested data 
or error 
message 

“illegal command or 
format” [17] response 

T56 
Protected Typed 
File Write Size 

Response with 
no errors or 
error message 

“illegal command or 
format” [17] response 

T57 
Protected Typed 
File Write Tag 

Response with 
no errors or 
error message 

“illegal command or 
format” [17] response 

T58 
Protected Typed 
File Write Offset 

Response with 
no errors or 
error message 

“illegal command or 
format” [17] response 

T59 
Protected Typed 
File Write File Type 

Response with 
no errors or 
error message 

“illegal command or 
format” [17] response 

T60 
Protected Typed 
File Write Data 

Response with 
no errors or 
error message 

“illegal command or 
format” [17] response 

T61 

Protected Typed 
Logical Write with 
Three Address 
Fields Size 

Response with 
no errors or 
error message 

“illegal command or 
format” [17] or “access 
denied, improper 
privilege” [17] 
responses 

T62 

Protected Typed 
Logical Write with 
Three Address 
Fields File No. 

Response with 
no errors or 
error message 

“illegal command or 
format” [17] response 

T63 

Protected Typed 
Logical Write with 
Three Address 
Fields File Type 

Response with 
no errors or 
error message 

“illegal command or 
format” [17] response 

T64 

Protected Typed 
Logical Write with 
Three Address 
Fields Element No. 

Response with 
no errors or 
error message 

“illegal command or 
format” [17] response 

T65 

Protected Typed 
Logical Write with 
Three Address 
Fields Sub-Element No. 

Response with 
no errors or 
error message 

“illegal command or 
format [17] response 

T66 Unprotected Read Address 

Response with 
requested data 
or error 
message 

“illegal command or 
format” [17] response 
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Test 
Number PCCC Command Fuzzed Field 

Expected 
Fuzzed 
Response 

Actual Fuzzed 
Response 

T67 Unprotected Read Size 

Response with 
requested data 
or error 
message 

“illegal command or 
format” [17] response 

T68 
Diagnostic Status-
Functionality Test N/A 

Diagnostic 
Status 
information 
response 

Diagnostic Status 
information response 

T69 
Read Diagnostic 
Counters Address 

Response with 
requested data 
or error 
message 

“illegal command or 
format” [17] response 

T70 
Read Diagnostic 
Counters Size 

Response with 
requested data 
or error 
message 

“illegal command or 
format” [17] response 

T71 
Restart-
Functionality Test N/A 

Response with 
error message 

“illegal command or 
format” [17] response 

T72 

Download 
Completed-
Functionality Test N/A 

Response with 
error message 

“access denied, 
improper privilege” 
[17] response 

ControlLogix Tests 

T73 

Protected Typed 
Logical Read with 
Three Address 
Fields 

File No., File 
Type SUT Fault 

No fault. EXT STS 
“Address doesn’t point 
to something usable” 
[17] response 

 

1. PCCC Echo Results 

a. T42 to T51 Test Cases  

The SUT returns successful responses to properly formatted PCCC Echo requests.  

The data specified in Echo requests, up to 247 bytes, are successfully transmitted back to 

the fuzzer in a CIP-encapsulated response packet.  The observed 247-byte limit exceeds 

the maximum of 243 data bytes indicated in the specification [17]. When Echo 

commands are transmitted with greater than 247 data bytes attached, the SUT returns a 

CIP-encapsulated response indicating “Routing failure, request packet too large.”  
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2. PCCC Protected Typed File Read Results

a. T52-T55 Test Cases

The SUT responds uniformly to all fuzzed Size, Tag, Offset, and File Type field 

inputs by returning a STS 0x10 “illegal command or format” [17] code. 

3. PCCC Protected Typed File Write Results

a. T56-T60 Test Cases

The SUT responds to all fuzzed Size, Tag, Offset, File Type, and Data field inputs 

by returning a STS 0x10 “illegal command or format” [17] code. 

4. PCCC Protected Logical Write with Three Address Fields Results

a. T61 Test Case

When fuzzing the Byte Size field of the command, all inputs except 0x00 return 

successful CIP-encapsulated PCCC packets with a STS 0x10 “illegal command or 

format” [17] code.  When the Byte Size field is set to 0x00, the STS field returns 0xF0, 

indicating an EXT STS is appended.  The returned EXT STS byte is 0x0B, indicating 

“access denied, improper privilege” [17].  

b. T62-T65 Test Cases

The SUT responses uniformly to all fuzzed File Number, File Type, Element 

Number, and Sub-Element Number field inputs by returning a STS 0x10 “illegal 

command or format” [17] code. 

5. PCCC Unprotected Read Results

a. T66-T67 Test Cases

The SUT responses uniformly to all fuzzed Address and Size field inputs by 

returning a STS 0x10 “illegal command or format” [17] code. 
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6. PCCC Diagnostic Status Results 

a. T68 Test Case 

The Diagnostic Status command returns a successful CIP-encapsulated PCCC 

response.  The specification [17] states that the MicroLogix 1000’s response is 24 bytes 

[17].  The MicroLogix 1100 returns 25 bytes of data. Due to this difference, it is not 

possible to determine the exact meaning of the returned byte values. It appears that the 

returned data provides information on the SUT’s system status as well as an ASCII 

representation that displays the SUT’s model information: 1763-LEC.  

7. PCCC Read Diagnostic Counters Results 

a. T69 Test Case 

When fuzzing the Address field of the Read Diagnostic Counters command, the 

SUT returns a CIP-encapsulated PCCC response with a STS 0x10 “illegal command or 

format” [17] code, for all cases except when the Address field is set to 0x0000. During 

testing, the Size field is constant at 0x01.  

b. T70 Test Case 

When fuzzing the Size field, the SUT responds with the requested number of 

bytes when the Size inputs are below 0x6D. These responses contain bytes with zero and 

non-zero values. The SUT responds to any input of 0x6D or greater with a packet 

containing no returned data and a STS 0x10 “illegal command or format” [17] code.  

8. PCCC Restart Results 

a. T71 Test Case 

Responses to the Restart command functionality test have STS 0x10 “illegal 

command or format” [17] codes.  
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9. PCCC Download Completed Results

a. T72 Test Case

The SUT responds to the Download Completed command with an EXT STS 

0x0B “access denied, privilege violation” [17] code. 

10. PCCC Protected Logical Read with Three Address Fields on
ControlLogix Results

a. T73 Test Case

We speculate that the MicroLogix vulnerability related to this command [9] 

would be present in the more advanced ControlLogix PLC due to the common practice of 

reusing legacy code without proper testing in different products from the same 

manufacturer. Fuzzing the File No. and File Type fields of the Protected Logical Read 

with Three Address Fields does not produce a fault in the ControlLogix, as observed in 

the MicroLogix.  This proves our hypothesis false. 

There is an observable difference between the MicroLogix and ControlLogix 

responses to the command when File No. and File Type are fuzzed. From previous testing 

[1], we observe that MicroLogix responds in one of five ways: 1) responds with an STS 

0x10 “illegal command or format” code, 2) responds with an EXT STS 0x0B “Access 

denied, improper privilege” [17] code, 3) responds with an EXT STS 0x0C “condition 

cannot be generated, resource is not available” [17] code, 4) responds with data, or 5) 

responds by entering a fault condition [17].  Table 14 illustrates sample request packet 

field contents and the range of SUT responses.  

Table 14.   Example MicroLogix 1100 Responses to PCCC Protected Logical 
Read with Three Address Fields Command 

Byte Size File Type File No. Element No. Sub-element No. SUT Response 

0x01 0x10 0xD0 0x84 0x00 STS 0x10 

0x57 0x75 0x65 0x10 0x00 EXT STS 0x0B 

0x56 0xBD 0x4C 0x59 0x00 EXT STS 0x0C 

0x1C 0x2A 0x62 0x01 0x00 Data response 

0xC8 0x03 0x47 0xBC 0x00 Fault response 
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In all tests, the ControlLogix SUT returns a STS 0xF0 “Error code in the EXT 

STS byte” code and an EXT STS byte of 0x06 “Address doesn’t point to something 

usable” [17]. This difference in SUT responses may be a useful tool in fingerprinting the 

manufacturer and model of a target PLC.   

D. DISCUSSION 

Our fuzz testing does not uncover any MicroLogix 1100 vulnerabilities.  

However, we observe some deviations from the expected responses in the MicroLogix 

implementation of ENIP and PCCC protocols.  No CIP deviations are observed.  Multiple 

optional tested CIP commands are not supported by MicroLogix 1100 PLCs. Table 15 

provides a summary of the discovered MicroLogix unexpected responses.  

Table 15.   Summary of MicroLogix 1100Unexpected Responses 

Test 
Number Command Fuzzed Field Protocol 

Expected 
Fuzzed 
Response 

Deviation 
Response 

ENIP Tests 

T7 List Services/Identity/Interfaces Options TCP 
Packet 
discarded 

Error 0x03 
response 

T8 List Services/Identity/Interfaces Options UDP 
Packet 
discarded 

Error 0x03 
response 

T9 UnRegisterSession 
Session 
Handle TCP 

Error 0x03 
TCP close 

Error 0x03 
response 
No TCP close 

T10 UnRegisterSession Status TCP 
Error 0x03 
TCP close 

Error 0x03 
response 
No TCP close 

T12 UnRegisterSession Options TCP 
Error 0x03 
TCP close 

Error 0x03 
response 
 no TCP 
close 

T14 SendRRData 
Session 
Handle TCP Error 0x03 

No error, 
Successful 
response 

T15 SendRRData Status TCP TCP ACK 

Successful 
responses for 
Status fields 
between 
0x00000000 
and 
0x0000FFFF 
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Test 
Number Command Fuzzed Field Protocol 

Expected 
Fuzzed 
Response 

Deviation 
Response 

T17 SendRRData Options TCP TCP ACK 
Successful 
response 

T19 SendRRData Timeout TCP Error 0x03 

Successful 
response, 
Timeout field 
1024 

T20 SendUnitData 
Session 
Handle TCP Error 0x03 

No error, 
Successful 
response 

T21 SendUnitData Status TCP TCP ACK 

Successful 
responses for 
Status fields 
between 
0x00000000 
and 
0x0000FFFF 

T23 SendUnitData Options TCP TCP ACK 
Successful 
response 

CIP Tests 
No observed deviations from specification: Tested optional commands not implemented by 
MicroLogix 1100 

PCCC Tests 

T43 PCCC Echo 
Data: Max 
Length TCP 

243-byte 
maximum 

247-byte 
maximum 

T52-
T55 Protected Typed File Read 

Size, Tag, 
Offset, File 
Type TCP 

Data 
response 

“illegal 
command or 
format” [17] 
response 

T56-
T60 Protected Typed File Write 

Size, Tag, 
Offset, File 
Type, Data TCP 

Data 
response 

“illegal 
command or 
format” [17] 
response 

T61-
T65 

Protected Typed Logical Write 
with Three Address Fields 

Size, File 
No., File 
Type, 
Element No. 
Sub-Element 
No.  TCP 

Response 
with no 
errors or 
error 
message 

“illegal 
command or 
format” [17] 
response 

T66-
T67 Unprotected Read 

Address, 
Size TCP 

Data 
response 

“illegal 
command or 
format” [17] 
response 

T68 Diagnostic Status 

N/A, 
Functionality 
Test TCP 

24-byte 
Diagnostic 
Status 
information 
response 

25-byte 
Diagnostic 
Status 
information 
response 
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The deviations in the ENIP implementation may be the result of manufacturer 

implementation decisions.  A potential explanation for the PCCC deviations is that the 

reference specification [9] applies to the MicroLogix 1000 model.  While we expect the 

implementation to be similar between the 1000 and 1100 models, there are differences in 

processing capability, memory allocations, and functionality between the PLCs, which 

may account for the deviations.   

Our ControlLogix testing disproves the hypothesis that the PCCC Protected 

Typed Logical Read with Three Address Fields vulnerability in MicroLogix 1100 also 

affects the ControlLogix 1756-L71.  In contrast to the fault condition observed on the 

MicroLogix 1100, the ControlLogix 1756-L71 returns an error message upon receiving a 

request with the File No. field ranges between 0x2 to 0x8 and the File Type is 0x47 or 

0x48. Table 16 illustrates the ControlLogix response. 

Table 16.   Summary of ControlLogix 1756-L71 Response Deviations 

Test 
Number Command Fuzzed Field Protocol 

Expected 
Fuzzed 
Response Deviation Response 

T73 

Protected Typed 
Logical Read with 
Three Address Fields 

File No. (0x02-
0x08), File 
Type (0x47 or 
0x48) TCP 

SUT 
Fault 

No fault. EXT STS 0x06 
“Address doesn’t point 
to something usable” [1] 
response 

 

The deviations may provide useful information for application-layer 

fingerprinting of PLC devices.  By cataloging the unique responses returned from the 

MicroLogix 1100 and ControlLogix 1756-L71, we can begin compiling a corpus of PLC 

response signatures.  This can be used to classify PLC modules through traffic analysis. 
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VI. CONCLUSION AND FURTHER WORK 

A. SUMMARY 

Motivated by the increasing employment of industrial control systems on U.S. 

Navy vessels and the potential for vulnerabilities in the utilized communication protocols, 

we aim to test the implementation of industrial network protocols on a PLC. Two 

hypotheses drive our testing.  The first hypothesis is that undiscovered software flaws 

existed in the implementation of ENIP, CIP, and PCCC protocols used by the 

MicroLogix PLCs. The second hypothesis is that network vulnerabilities known to exist 

in older PLCs help inform on the robustness of the ICS network stack in more modern 

PLCs. 

To verify our hypotheses, we use a fuzz testing methodology to stress test selected 

fields in target commands and monitor the system responses.  To accomplish this, we use 

the Scapy-based ENIP Fuzz program [9] and modify the code to expand the range of 

testable protocol commands.  We test our first hypothesis on the MicroLogix 1100 PLC 

by selecting a range of commands from the ENIP, CIP, and PCCC protocols that were 

not previously tested and systematically fuzzed the modifiable fields.  Candidate protocol 

commands are evaluated for fuzzing based on their likelihood of creating a fault 

condition while not permanently damaging the test PLC or corrupting the functionality of 

the MicroLogix system.   

The results of our fuzz testing do not uncover any new vulnerabilities in the 

MicroLogix 1100 PLC.  However, we observe several unexpected responses in four 

ENIP commands (List Services/Identity/Interfaces, UnRegisterSession, SendRRData, and 

SendUnitData), and six PCCC commands (Echo, Protected Typed File Read, Protected 

Typed File Write, Protected Logical Write with Three Address Fields, Unprotected Read, 

and Diagnostic Status). 

Our second hypothesis is tested by sending to the ControlLogix 1756-L71 

specially crafted PCCC Protected Logical Read with Three Address Fields packets that 

trigger a fault condition in the MicroLogix 1100 [9].  By replicating the fault-inducing 
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packet configuration of the command and applying it to a more advanced PLC, we aim to 

test if cross-generational vulnerabilities existed in AB/RA PLCs. 

 Instead of entering a fault state, the ControlLogix 1756-L71 PLC returns an error 

message upon receiving the fault-inducing test packets.  This behavior disproves our 

hypothesis that the same MicroLogix 1100 vulnerability would affect the ControlLogix 

1756-L71 PLC.  

B. FUTURE WORK 

In addition to PLC fingerprinting, the unique SUT responses observed during our 

testing may also be used by an intrusion detection system to catch malicious probing 

activities.  To provide a larger context and differentiation among various PLCs, we plan 

to perform additional EtherNet/IP fuzz testing on the ControlLogix 1756-L71 and other 

ControlLogix models.  These tests will provide insights on whether the observed 

response to the PCCC Protected Logical Read with Three Address Field command is 

specific to that command or is common to all PCCC requests, and on whether the PCCC 

support is the same or different across ControlLogix models.   

Another extension to this work is to test the MicroLogix 1000 PLC to determine if 

the deviations observed in the MicroLogix 1100 are unique to that model or if the 

MicroLogix family uses a different implementation than detailed in the specification [17].   

The scope of this thesis focuses on two different generations of AB/RA PLCs and 

the EtherNet/IP protocol suite. The ENIP Fuzz program can be enhanced to support other 

industrial protocols such as PROFINET or DNP3. The enhancement will provide a 

flexible test platform, which can be used to perform penetration testing, intrusion 

detection, and fingerprinting reconnaissance on a wide range of industrial control 

systems.   

  



87 

APPENDIX A.  ENIP COMMAND RESPONSES 

The following Wireshark captures in Figures 56–93 illustrate test case responses 

for each command. For certain test cases, the corresponding request command sent to the 

SUT is also included to show how select fuzzed field inputs affect SUT responses. For 

descriptions of SUT responses, see Chapter V: Test Analysis. 

A. ENIP LISTSERVICES TEST CASES 

This section shows the results of the ENIP ListServices test cases. 

(1) T1 Results 

Figure 56.  ListServices Response over TCP (Fuzzed Session Handle) 
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(2) T2 Results 

 

Figure 57.  ListServices Response over UDP (Fuzzed Session Handle) 

(3) T3 Results 

 

Figure 58.  ListServices Response over TCP (Fuzzed Status) 
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(4) T4 Results 

 

Figure 59.  ListServices Response over UDP (Fuzzed Status) 

(5) T5 Results 

 

Figure 60.  ListServices Response over TCP (Fuzzed Sender Context) 
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(6) T6 Results 

 

Figure 61.  ListServices Response over UDP (Fuzzed Sender Context) 

(7) T7 Results 

 

Figure 62.  ListServices Response over TCP (Fuzzed Options) 
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(8) T8 Results 

 

Figure 63.  ListServices Response over UDP (Fuzzed Options) 

B. ENIP UNREGISTERSESSION TEST CASES 

This section shows the results of the ENIP UnRegisterSession test cases. 

(1) T9 Results 

 

Figure 64.  UnRegisterSession Response over TCP (Fuzzed Session Handle) 
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(2) T10 Results 

 

Figure 65.  UnRegisterSession Response over TCP (Fuzzed Status) 

(3) T11 Results 

 

Figure 66.  UnRegisterSession Response over TCP (Fuzzed Sender Context) 
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(4) T12 Results 

Figure 67.  UnRegisterSession Response over TCP (Fuzzed Options) 

Figure 68.  CIP Forward Open Response Following ENIP UnRegisterSession 
Request with Fuzzed Options Field 
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(5) T13 Results 

 

Figure 69.  UnRegisterSession Response over UDP (Functionality Test) 

C. ENIP SENDRRDATA TEST CASES 

This section shows the results of the ENIP SendRRData test cases. 

(1) T14 Results 

 

Figure 70.  SendRRData Request over TCP (Fuzzed Session Handle) 
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Figure 71.  SendRRData Response over TCP (Fuzzed Session Handle) 

(2) T15 Results 

Figure 72.  SendRRData Request over TCP (Fuzzed Status) 
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Figure 73.  SendRRData Response over TCP (Fuzzed Status) 

(3) T16 Results 

 

Figure 74.  SendRRData Response over TCP (Fuzzed Sender Context) 
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(4) T17 Results 

Figure 75.  SendRRData Request over TCP (Fuzzed Options) 

Figure 76.  SendRRData Response over TCP (Fuzzed Options) 
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(5) T18 Results 

 

Figure 77.  SendRRData Response over TCP (Fuzzed Interface Handle) 

(6) T19 Results 

 

Figure 78.  SendRRData Request over TCP (Fuzzed Timeout) 
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Figure 79.  SendRRData Response over TCP (Fuzzed Timeout) 

D. ENIP SENDUNITDATA TEST CASES 

This section shows the results of the ENIP SendUnitData test cases. 

(1) T20 Results 

 

Figure 80.  SendUnitData Request over TCP (Fuzzed Session Handle) 
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Figure 81.  SendUnitData Response over TCP (Fuzzed Session Handle) 

(2) T21 Results 

 

Figure 82.  SendUnitData Request over TCP (Fuzzed Status: 0x0000FFFF) 
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Figure 83.  SendUnitData Response over TCP (Fuzzed Status: 0x0000FFFF) 

(3) T22 Results 

 

Figure 84.  SendUnitData Response over TCP (Fuzzed Sender Context) 
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(4) T23 Results 

 

Figure 85.  SendUnitData Request over TCP (Fuzzed Options) 

 

Figure 86.  SendUnitData Response over TCP (Fuzzed Options) 
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(5) T24 Results 

Figure 87.  SendUnitData Response over TCP (Fuzzed Interface Handle) 

(6) T25 Results 

Figure 88.  SendUnitData Request over TCP (Fuzzed Timeout) 
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Figure 89.  SendUnitData Response over TCP (Fuzzed Timeout) 

E. ENIP RESERVED FOR LEGACY USE TEST CASES 

This section shows the results of the ENIP Reserved for Legacy Use test cases. 

(1) T26 Results 

 

Figure 90.  Reserved for Legacy Use Response over TCP 
(Fuzzed Command Field) 
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(2) T27 Results 

 

Figure 91.  Reserved for Legacy Use Response over UDP 
(Fuzzed Command Field) 

F. ENIP RESERVED FOR FUTURE USE TEST CASES 

This section shows the results of the ENIP Reserved for Future Use test cases. 

(1) T28 Results 

 

Figure 92.  Reserved for Future Use Response over TCP 
(Fuzzed Command Field) 



 106 

(2) T29 Results 

 

Figure 93.  Reserved for Future Use Response over UDP 
(Fuzzed Command Field) 
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APPENDIX B.  CIP COMMAND RESPONSES 

The following Wireshark captures in Figures 94–118 illustrate test case responses 

for each command. For certain test cases, the corresponding request command sent to the 

SUT is also included to show how select fuzzed field inputs affect SUT responses. For 

descriptions of SUT responses, see Chapter V: Test Analysis. 

A. CIP GET_ATTRIBUTES_ALL TEST CASES 

This section shows the results of the CIP Get_Attributes_All test cases. 

(1) T30 Results 

The Get_Attributes_All request with a fuzzed Class field returns three types of 

responses. Figure 94 illustrates a successful CIP response. Figure 95 shows a “Service 

not supported” response. Figure 96 depicts a “Path destination unknown” response.   

Figure 94.  Get_Attributes_All Response over TCP (Class 0x01, Instance 0x01) 
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Figure 95.  Get_Attributes_All “Service Not Supported” Response over TCP 
(Class 0x06, Instance 0x01) 

 

Figure 96.  Get_Attributes_All “Path Destination Unknown” Response over TCP 
(Class 0x28, Instance 0x01) 
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(2) T31 Results 

Figure 97 illustrates a “Path destination unknown response. Figure 98 

demonstrates the response for the Identity Class with Instance 0x00. 

Figure 97.  Get_Attributes_All “Path Destination Unknown” Response over TCP 
(Class 0x01, Instance 0x16) 

Figure 98.  Get_Attributes_All Response over TCP (Class 0x01, Instance 0x00) 

B. CIP GET_ATTRIBUTE_LIST TEST CASES 

This section shows the results of the CIP Get_Attributes_List test cases. 
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(1) T32 Results 

A Get_Attribute_List command with a fuzzed Class field returns two different 

responses. Figure 99 shows a General Status 0x08 “Service not supported” [15] response 

and Figure 100 illustrates a General Status 0x05 “Path destination unknown” [15] 

response.  

 

Figure 99.  Get_Attribute_List Response over TCP (Class 0x01, Instance 0x01, 
Attribute 0x01) 

 

Figure 100.  Get_Attribute_List Response over TCP (Class 0x7F, Instance 0x01, 
Attribute 0x01) 
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(2) T33 Results 

The Get_Attribute_List with fuzzed Instance field requests return two different 

responses: General Status 0x08 “Service not supported” [15] responses (Figure 101) and 

General Status 0x05 “Path destination unknown” [15] responses (Figure 102).  

Figure 101.  Get_Attribute_List “Service Not Supported” Response over TCP 
(Class 0x01, Instance 0x01, Attribute 0x01) 
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Figure 102.  Get_Attribute_List “Path Destination Unknown” Response over 
TCP (Class 0x01, Instance 0x01, Attribute 0x01) 
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(3) T34 Results 

The Get_Attribute_List command with a fuzzed Attribute field returns General 

Status 0x08 “Service not supported” [15] responses as shown in Figure 103.  

 

Figure 103.  Get_Attribute_List “Service Not Supported” Response over TCP 
(Class 0x01, Instance 0x01, Attribute 200) 
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(4) T35 Results 

A Get_Attribute_List request with the Attribute_count set to 223 is illustrated in 

Figure 104. Figure 105 shows the SUT response. Get_Attribute_List commands with the 

Attribute_count field exceeding 223 (Figure 106) receive a TCP ACK response (Figure 

107).  

 

Figure 104.  Get_Attribute_List Request over TCP (Attribute_count: 223) 
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Figure 105.  Get_Attribute_List Response over TCP (Attribute_count: 223) 

Figure 106.  Get_Attribute_List Request over TCP (Attribute_count: 224) 
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Figure 107.  Get_Attribute_List Response over TCP (Attribute_count: 224) 

C. CIP GET_ATTRIBUTE_SINGLE TEST CASES 

This section shows the results of the CIP Get_Attributes_Single test cases. 

(1) T36 Results 

Get_Attribute_Single with a fuzzed Class field returns either a “Service not 

supported” response (Figure 108) or a “Path destination unknown response” (Figure 109).  

 

Figure 108.  Get_Attribute_Single “Service Not Supported” Response over TCP 
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Figure 109.  Get_Attribute_Single “Path Destination Unknown” Response 
over TCP 

(2) T37 Results 

The Get_Attribute_Single command returns an “Attribute not supported” 

response when the Instance field is set to 0x00 and Class and Attribute fields are 0x01 

(Figure 110). When the Instance field is 0x01, with the same Class and Attribute fields, 

the SUT returns a “Service not supported” message (Figure 111). All other Instance fields 

with the Class and Attribute fields set to 0x01 return “Path destination unknown” (Figure 

112). 
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Figure 110.  Get_Attribute_Single “Attribute Not Supported” Response over TCP  

 

Figure 111.  Get_Attribute_Single “Service Not Supported” Response over TCP  
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Figure 112.  Get_Attribute_Single “Path Destination Unknown” Response 
over TCP 

(3) T38 Results 

The MicroLogix responds to all Get_Attribute_Single requests with a fuzzed 

Attribute field and the Class and Instance fields set to 0x00 with an “Attribute not 

supported” message (Figure 113).  

Figure 113.  Get_Attribute_Single “Attribute Not Supported” Response over TCP 
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D. CIP FIND_NEXT_OBJECT_INSTANCE TEST CASES 

This section shows the results of the CIP Find_Next_Object_Instance test cases. 

(1) T39 Results 

The CIP Find_Next_Object_Instance command with a fuzzed Class field returns 

“Service not supported” for six Class field inputs, as illustrated by Figure 114. All other 

fuzzed Classes returned “Path destination unknown” responses (Figure 115).  

 

Figure 114.  Find_Next_Object_Instance “Service Not Supported” Response 
over TCP  



121 

Figure 115.  Find_Next_Object_Instance “Path Destination Unknown” Response 
over TCP 

(2) T40 Results 

When testing the Instance field, Class is set to 0x01. Requests with Instance 0x00 

and 0x01 return “Service not supported” responses (Figure 116). All other fuzzed 

Instance inputs return “Path destination unknown” messages (Figure 117).   
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Figure 116.  Find_Next_Object_Instance “Service Not Supported” Response 
over TCP  

 

Figure 117.  Find_Next_Object_Instance “Path Destination Unknown” Response 
over TCP  
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(3) T41 Results 

The Maximum Returned Values field is tested with inputs between 0x00 and 

0xFF. All requests return General Status 0x08 “Service not supported” [15] responses 

when the Class is set to 0x01 and Instance is set to 0x00 (Figure 118). 

Figure 118.  Find_Next_Object_Instance “Service Not Supported” Response 
over TCP 
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APPENDIX C.  PCCC COMMAND RESPONSES 

The following Wireshark captures in Figures 119 - 154 illustrate test case 

responses for each command. For descriptions of SUT responses, see Chapter V: Test 

Analysis. 

A. PCCC ECHO TEST CASES 

This section shows the results of the PCCC Echo test cases. 

(1) T42 Results 

 

Figure 119.  Echo Response over TCP (0 Bytes Attached) 
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(2) T43 Results 

 

Figure 120.  Echo Response over TCP (243 Bytes Attached) 

(3) T44 Results 

 

Figure 121.  Echo Response over TCP (8 Bytes Fuzzed) 
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(4) T45 Results 

 

Figure 122.  Echo Response over TCP (9 Bytes Fuzzed) 

(5) T46 Results 

 

Figure 123.  Echo Response over TCP (10 Bytes Fuzzed) 
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(6) T47 Results 

 

Figure 124.  Echo Response over TCP (40 Bytes Fuzzed) 

(7) T48 Results 

 

Figure 125.  Echo Response over TCP (243 Bytes Fuzzed) 
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(8) T49 Results 

 

Figure 126.  Echo Response over TCP (Maximum Number of Bytes without 
Error Message: 247 Bytes Fuzzed) 

(9) T50 Results 

 

Figure 127.  Echo Response over TCP (248 Bytes Fuzzed) 
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(10) T51 Results 

 

Figure 128.  Echo Response over TCP (256 Bytes Fuzzed) 

B. PCCC PROTECTED TYPED FILE READ TEST CASES 

This section shows the results of the PCCC Protected Typed File Read test cases. 

(1) T52 Results 

 

Figure 129.  Protected Typed File Read Response over TCP (Size Fuzzed) 
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(2) T53 Results 

 

Figure 130.  Protected Typed File Read Response over TCP (Tag Fuzzed) 

(3) T54 Results 

 

Figure 131.  Protected Typed File Read Response over TCP (Offset Fuzzed) 
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(4) T55 Results 

 

Figure 132.  Protected Typed File Read Response over TCP (File Type Fuzzed) 

C. PCCC PROTECTED TYPED FILE WRITE TEST CASES 

This section shows the results of the PCCC Protected Typed File Write test cases. 

(1) T56 Results 

 

Figure 133.  Protected Typed File Write Response over TCP (Size Fuzzed) 
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(2) T57 Results 

 

Figure 134.  Protected Typed File Write Response over TCP (Tag Fuzzed) 

(3) T58 Results 

 

Figure 135.  Protected Typed File Write Response over TCP (Offset Fuzzed) 
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(4) T59 Results 

 

Figure 136.  Protected Typed File Write Response over TCP (File Type Fuzzed) 

(5) T60 Results 

 

Figure 137.  Protected Typed File Write Response over TCP (Data Fuzzed) 

D. PCCC PROTECTED LOGICAL WRITE WITH THREE ADDRESS 
FIELDS TEST CASES 

This section shows the results of the PCCC Protected Logical Write with Three 

Address Fields test cases. 

(1) T61 Results 

The Protected Logical Write with Three Address Fields responds with an EXT 

STS of 0x0B (“access denied, improper privilege”) when Byte Size is set to 0x00 (Figure 
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138).  All other Byte Size inputs return responses with STS of 0x10 (“illegal command or 

format”) as demonstrated in Figure 139.   

 

Figure 138.  Protected Logical Write with Three Address Fields Response over 
TCP (Byte Size 0x00) 

 

Figure 139.  Protected Logical Write with Three Address Fields Response over 
TCP (Byte Size Fuzzed) 
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(2) T62 Results 

 

Figure 140.  Protected Logical Write with Three Address Fields Response over 
TCP (File No. Fuzzed) 

(3) T63 Results 

 

Figure 141.  Protected Logical Write with Three Address Fields Response over 
TCP (File Type Fuzzed) 
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(4) T64 Results 

 

Figure 142.  Protected Logical Write with Three Address Fields Response over 
TCP (Element No. Fuzzed) 

(5) T65 Results 

 

Figure 143.  Protected Logical Write with Three Address Fields Response over 
TCP (Sub-Element No. Fuzzed) 

E. PCCC UNPROTECTED READ TEST CASES 

This section shows the results of the PCCC Unprotected Read test cases. 
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(1) T66 Results 

 

Figure 144.  Unprotected Read Response over TCP (Address Fuzzed) 

(2) T67 Results 

 
 

Figure 145.  Unprotected Read Response over TCP (Size Fuzzed). 

F. PCCC DIAGNOSTIC STATUS TEST CASES 

This section shows the results of the PCCC Diagnostic Status test cases. 
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(1) T68 Results 

 

Figure 146.  Diagnostic Status Response over TCP (Functionality Test) 

G. PCCC READ DIAGNOSTIC COUNTERS TEST CASES 

This section shows the results of the PCCC Read Diagnostic Counters test cases. 

(1) T69 Results 

 

Figure 147.  Read Diagnostic Counters Response over TCP  
(Address Fuzzed: 0x3455) 
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(2) T70 Results 

 

Figure 148.  Read Diagnostic Counters Response over TCP (Size Fuzzed: 25) 

 

Figure 149.  Read Diagnostic Counters Response over TCP (Size Fuzzed: 75) 
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H. PCCC RESTART TEST CASES 

This section shows the results of the PCCC Restart test cases. 

(1) T71 Results 

 

Figure 150.  Restart Response over TCP (Functionality Test) 

I. PCCC DOWNLOAD COMPLETED TEST CASES 

This section shows the results of the PCCC Download Completed test cases. 

(1) T72 Results 

 

Figure 151.  Download Completed Response over TCP (Functionality Test) 
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J. PCCC PROTECTED LOGICAL READ WITH THREE ADDRESS FIELDS 
TEST CASES 

(1) T73 Results 

For comparison, Figure 152 illustrates a Protected Logical Read with Three 

Address Fields request packet with File No. 0x03 and File Type 0x47 field inputs sent to 

a MicroLogix 1100 PLC. The SUT enters a fault state upon receiving the packet, i.e., no 

CIP response is observed.  Figure 153 illustrates a similar request with identical File No. 

and File Type fields sent to the ControlLogix PLC. Figure 154 displays the ControlLogix 

PLC’s response to the test packet.  The ControlLogix does not fault. The response packet 

contains an EXT STS code of 0x06.  

 

Figure 152.  MicroLogix Protected Logical Read with Three Address Fields 
Request over TCP (File No. 0x03 and File Type 0x47) 
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Figure 153.  ControlLogix Protected Logical Read with Three Address Fields 
Request over TCP (File No. 0x03 and File Type 0x47) 

 

Figure 154.  ControlLogix Protected Logical Read with Three Address Fields 
Response over TCP (File No. 0x03 and File Type 0x47) 
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